
TEST SUITE HOLY TRINITY
DAVE LIDDAMENT

LET’S START WITH
A STORY…

AGENDA

WHY ARE WE HERE

▸ What went wrong

▸ Why testing will help

▸ How can we build a good test suite

▸ Only talking asserting correct functionality

Dave Liddament @daveliddament

Lamp Bristol

Organise PHP-SW and Bristol PHP Training

WHAT WENT
WRONG?

TESTING FEEDBACK
LOOP WAS TOO SLOW

REFACTORING
WAS TOO RISKY

WHY DO WE NEED TO REFACTOR

WE WILL ALL MAKE POOR DECISIONS AT THE START OF A PROJECT

K
no

w
le

ge

Time on project

WHAT DO WE WANT

WE NEED A TEST SUITE

▸ Prove that code works

▸ Prevent regression

▸ Allow us to refactor

IDEAL TEST SUITE

IDEAL TEST SUITE

Fast

IDEAL TEST SUITE

High coverage

IDEAL TEST SUITE

Low maintenance

THE DREAM

THE IDEAL TEST SUITE

▸ Fast

▸ High coverage

▸ Low maintenance

TERMINOLOGY

TESTING
CONTINUUM

TESTING CONTINUUM

Unit tests Systems tests

TESTING CONTINUUM

SYSTEM TEST

AWARD WINNING SOFTWARE

$

Unit tests Systems tests

TESTING CONTINUUM

Unit tests Systems tests

TESTING CONTINUUM

Unit tests Systems tests

TESTING CONTINUUM

UNIT TEST EXAMPLE - SOFTWARE UNDER TEST

TESTING CONTINUUM

UNIT TEST EXAMPLE - SOFTWARE UNDER TEST

class PasswordValidator
{

 /**
 * Returns true if password meets following criteria:
 *
 * - 8 or more characters
 * - at least 1 digit
 * - at least 1 upper case letter
 * - at least 1 lower case letter
 */
 public function isValid(string $password) : bool

TESTING CONTINUUM

UNIT TEST EXAMPLE - TEST CASES REQUIRED

▸ Valid passwords:

▸ “Passw0rd”

▸ Invalid passwords:

▸ “Passw0r” - too short (everything else is good)

▸ “Password” - no digit

▸ “passw0rd” - no upper case letters

▸ “PASSW0RD” - no lower case letters

TESTING CONTINUUM

LOOK HOW EASY IT IS TO TEST…
class PasswordValidatorTest extends TestCase
{
 public function dataProvider() : array
 {
 return [
 “valid” => [true, “Passw0rd”],
 “tooShort” => [false, “Passw0r”],
 “noDigit” => [false, “Password”],
 “noUpperCase” => [false, “passw0rd”],
 “noLowerCase” => [false, “PASSW0RD”],

];
 }

 /**
 * @dataProvider dataProvider
 */
 public function testValidator(bool $expectedResult, string $inputValue)
 {

$validator = new PasswordValidator();
$actualResult = $validator->isValid($inputValue);
$this->assertEquals($expectedResult, $actualResult);

}
}

TESTING CONTINUUM

LOOK HOW EASY IT IS TO TEST…
class PasswordValidatorTest extends TestCase
{
 public function dataProvider() : array
 {
 return [
 “valid” => [true, “Passw0rd”],
 “tooShort” => [false, “Passw0r”],
 “noDigit” => [false, “Password”],
 “noUpperCase” => [false, “passw0rd”],
 “noLowerCase” => [false, “PASSW0RD”],

];
 }

 /**
 * @dataProvider dataProvider
 */
 public function testValidator(bool $expectedResult, string $inputValue)
 {

$validator = new PasswordValidator();
$actualResult = $validator->isValid($inputValue);
$this->assertEquals($expectedResult, $actualResult);

}
}

TESTING CONTINUUM

LOOK HOW EASY IT IS TO TEST…
class PasswordValidatorTest extends TestCase
{
 public function dataProvider() : array
 {
 return [
 “valid” => [true, “Passw0rd”],
 “tooShort” => [false, “Passw0r”],
 “noDigit” => [false, “Password”],
 “noUpperCase” => [false, “passw0rd”],
 “noLowerCase” => [false, “PASSW0RD”],

];
 }

 /**
 * @dataProvider dataProvider
 */
 public function testValidator(bool $expectedResult, string $inputValue)
 {

$validator = new PasswordValidator();
$actualResult = $validator->isValid($inputValue);
$this->assertEquals($expectedResult, $actualResult);

}
}

THESE TESTS ARE
FAMOUS FIVE

TAKE AWAY

UNIT TEST THIS KIND OF LOGIC

▸ Unit test sweet spot

▸ Quicker to test than not test

▸ Learn how to use data providers for your test framework

THE DREAM

THE IDEAL TEST SUITE

▸ Fast

▸ High coverage

▸ Low maintenance

TESTING CONTINUUM

Unit tests Systems tests

SPEED OF EXECUTION

TESTING CONTINUUM

Unit tests Systems tests

SPEED OF EXECUTION

Fast

SYSTEM TEST

AWARD WINNING SOFTWARE

$

TESTING CONTINUUM

Unit tests Systems tests

SPEED OF EXECUTION

Fast Slow

TESTING CONTINUUM

Unit tests Systems tests

COVERAGE

TESTING CONTINUUM

Unit tests Systems tests

COVERAGE

High

TESTING CONTINUUM

Unit tests Systems tests

COVERAGE

High
Low

TESTING CONTINUUM

Unit tests Systems tests

COVERAGE

High
Low

Low

TESTING CONTINUUM

Unit tests Systems tests

COVERAGE

High
LowHigh

Low

TESTING CONTINUUM

Unit tests Systems tests

MAINTENANCE COSTS

MAINTENANCE COSTS

UNIT TEST

MAINTENANCE COSTS

UNIT TEST

MAINTENANCE COSTS

INTEGRATION TEST

MAINTENANCE COSTS

INTEGRATION TEST

TESTING CONTINUUM

Unit tests Systems tests

MAINTENANCE COSTS

TESTING CONTINUUM

Unit tests Systems tests

MAINTENANCE COSTS

Low

TESTING CONTINUUM

Unit tests Systems tests

MAINTENANCE COSTS

HighLow

TESTING CONTINUUM

Unit tests Systems tests

THANK GOODNESS FOR THAT MOMENTS

TESTING CONTINUUM

Unit tests Systems tests

THANK GOODNESS FOR THAT MOMENTS

Low

TESTING CONTINUUM

Unit tests Systems tests

THANK GOODNESS FOR THAT MOMENTS

HighLow

SO FAR NOTHING TOO
CONTROVERSIAL

NOTHING IS
BLACK AND WHITE

EVERYTHING IS
COMPROMISE

WRITING A GOOD TEST
SUITE IS A SKILL

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

Unit tests Systems tests

WHERE ALONG THE CONTINUUM SHOULD WE TEST?

HOW SHOULD WE TEST

TEST PYRAMID

System

Unit

HOW SHOULD WE TEST

TEST PYRAMID

HOW SHOULD WE TEST

TEST PYRAMID IS STILL A COMPROMISE

TESTS

HOW SHOULD WE TEST

TEST PYRAMID IS STILL A COMPROMISE

TESTS

HOW SHOULD WE TEST

TEST PYRAMID IS STILL A COMPROMISE

TESTS

QUICK RECAP

WHY DO WE NEED A TEST SUITE

▸ Prove code works

▸ Prevent against regression

▸ Allow safe refactoring of code

QUICK RECAP

OUR IDEAL TEST SUITE WOULD BE…

▸ Fast to execute

▸ High coverage

▸ Low maintenance

QUICK RECAP

EVERY THING IS A COMPROMISE

▸ Not achievable

▸ Our goals contradict each other

▸ Nothing is black and white

UNIT TESTS IN MORE
DEPTH

ARCHITECTURE

NEW REQUIREMENT

class PasswordValidator
{

 /**
 * Returns true if password meets following criteria:
 *
 * - 8 or more characters
 * - at least 1 digit
 * - at least 1 upper case letter
 * - at least 1 lower case letter
 * - not one of the user’s previous 5 passwords
 */
 public function isValid(string $password, User $user) : bool

ARCHITECTURE

EXISTING
PASSWORD
VALIDATION

RULES

ARCHITECTURE

EXISTING
PASSWORD
VALIDATION

RULES

CHECK IF LAST 5
PASSWORDS

ARCHITECTURE

EXISTING
PASSWORD
VALIDATION

RULES

CHECK IF LAST 5
PASSWORDS

ARCHITECTURE

EXISTING
PASSWORD
VALIDATION

RULES

CHECK IF LAST 5
PASSWORDS

INTERFACE

ARCHITECTURE

EXISTING
PASSWORD
VALIDATION

RULES

CHECK IF LAST 5
PASSWORDS

INTERFACE

ARCHITECTURE

EXISTING
PASSWORD
VALIDATION

RULES

CHECK IF LAST 5
PASSWORDS

INTERFACE

ARCHITECTURE

EXISTING
PASSWORD
VALIDATION

RULES

INTERFACE ALTERNATIVE
IMPLEMENTATION

ARCHITECTURE

PREVIOUS PASSWORD CHECKER INTERFACE

interface PreviousPasswordChecker
{

 /**
 * Returns true if password has been used by user
 * in previous 5 passwords
 */
 public function isPreviouslyUsed($password, $user);

}

ARCHITECTURE

USE DEPENDENCY INJECTION

class PasswordValidator
{

 private $previousPasswordChecker

public function __construct($previousPasswordChecker) {
 $this->previousPasswordChecker = $previousPasswordChecker;

 }

 public function isValid(string $password) : bool
 {
 …
 }

ARCHITECTURE

OPTIONS WITH DEPENDENCIES

▸ Real thing

▸ Test double

▸ Stub

▸ Mock

▸ Fake

ARCHITECTURE

PASSWORD VALIDATOR TEST REVISITED

ARCHITECTURE

PASSWORD VALIDATOR TEST REVISITED

▸ Update existing tests to account for:

▸ Updated PasswordValidator constructor

▸ Any calls to RecentPasswordChecker

ARCHITECTURE

PASSWORD VALIDATOR TEST REVISITED

▸ Update existing tests to account for:

▸ Updated PasswordValidator constructor

▸ Any calls to RecentPasswordChecker

▸ New tests

▸ Valid password. Has been recently used

▸ Valid password. Has NOT been recently used

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

TEST

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

TEST
MOCK

RECENT
PASSWORD
CHECKER

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return false.

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

MOCK
RECENT

PASSWORD
CHECKER

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return false.

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“Passw0rd”, $user)

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return false.

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“Passw0rd”, $user)

false

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return false.

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

true

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“Passw0rd”, $user)

false

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return false.

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

true

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“Passw0rd”, $user)

false

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return false.

Were expectations met?

MOCKS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

true

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“Passw0rd”, $user)

false

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return false.

true

Were expectations met?

MOCKS

NEW TEST: VALID PASSWORD, BUT RECENTLY USED

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

false

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“Passw0rd”, $user)

true

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0rd” and $user. Return true.

true

Were expectations met?

THESE EXTRA 2 TESTS
ARE THE AWKWARD DUO

MOCKS

EXISTING TESTS (FAMOUS FIVE)

MOCKS

EXISTING TESTS (FAMOUS FIVE)

class PasswordValidator
{
 public function isValid(string $password, User $user) : bool
 {
 if ($this->recentPasswordChecker->isRecentPassword(
 $password, $user)) {
 return false;
 }

 if (… password too short …) return false;
 if (… password has no digit …) return false;

 … remaining checks …

 return true;
 }

MOCKS

EXISTING TESTS

PASSWORD
VALIDATORTEST

isValid(“<password>”, $user)

true/false

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“<password>”, $user)

false

Expect: Exactly 1 call to isPreviouslyUsed with parameters “<password>” and $user. Return false.

true

Were expectations met?

MOCKS

EXISTING TESTS - REFACTOR CODE

class PasswordValidator
{
 public function isValid(string $password, User $user) : bool
 {
 if (… password too short …) return false;
 if (… password has no digit …) return false;

 … remaining checks …

 if ($this->recentPasswordChecker->isRecentPassword(
 $password, $user)) {
 return false;
 }

 return true;
 }

MOCKS

EXISTING TESTS: AFTER REFACTOR

PASSWORD
VALIDATORTEST

isValid(“<password>”, $user)

false

MOCK
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(“<password>”, $user)

false

Expect: Exactly 1 call to isPreviouslyUsed with parameters “<password>” and $user. Return false.

false

Were expectations met?

WE’VE REFACTORED CODE
AND THE TESTS HAVE
BROKEN. NOT GOOD!

STUB

USE A STUB

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

true

STUB

USE A STUB

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

true

STUB
RECENT

PASSWORD
CHECKER

isPreviouslyUsed(?, ?)

false

STUB

USE A STUB

PASSWORD
VALIDATORTEST

isValid(“Passw0rd”, $user)

true

ARCHITECTURE

HAND CODE STUB?

StubPasswordChecker implements PreviousPasswordChecker
{

 public function isPreviouslyUsed(
string $password, User $user) : bool {

return false;
 }

}

TAKE AWAY

USE STUBS UNLESS YOU REALLY NEED MOCKS

▸ Limit the coupling between tests and the code

▸ Unnecessary coupling increases maintenance cost

▸ tests harder to write in the first place

▸ reduces ability to refactor

ARCHITECTURE

TEST DOUBLE IS AN APPROXIMATION

ARCHITECTURE

TEST DOUBLE IS AN APPROXIMATION

ARCHITECTURE

TEST DOUBLE IS AN APPROXIMATION

ARCHITECTURE

IMPROVE THE INTERFACE

interface PreviousPasswordChecker
{

 /**
 * Returns true if password has been used by user
 * in previous 5 passwords
 */
 public function isPreviouslyUsed(

$password,
$user

)

}

ARCHITECTURE

IMPROVE THE INTERFACE

interface PreviousPasswordChecker
{

 /**
 * Returns true if password has been used by user
 * in previous 5 passwords
 */
 public function isPreviouslyUsed(

$password,
$user

)

}

string

ARCHITECTURE

IMPROVE THE INTERFACE

interface PreviousPasswordChecker
{

 /**
 * Returns true if password has been used by user
 * in previous 5 passwords
 */
 public function isPreviouslyUsed(

$password,
$user

)

}

string
User

ARCHITECTURE

IMPROVE THE INTERFACE

interface PreviousPasswordChecker
{

 /**
 * Returns true if password has been used by user
 * in previous 5 passwords
 */
 public function isPreviouslyUsed(

$password,
$user

)

}

string
User

: bool

ARCHITECTURE

OTHER REASONS FOR DIFFERENCES BETWEEN TEST DOUBLE

▸ Specification might change

▸ Specification might be misunderstood

▸ Functionality might not be implemented

QUICK RECAP

UNIT TEST LEVEL

▸ Good architecture makes testing easier

▸ Decouple tests from code as much as possible

▸ E.g. use stubs unless you really need a mock

BIGGER TESTS

ARCHITECTURE

AWARD WINNING SOFTWARE

$

ARCHITECTURE

ARCHITECTURE

INTERFACE TO EXTERNAL
SERVICE

CODE TALKS TO
EXTERNAL SERVICE

CODE THAT NEEDS TO
SEND AN EMAIL

ARCHITECTURE

EMAIL GATEWAY INTERFACE

interface EmailGatewayInterface
{

 public function sendEmail(EmailMessage $message);

}

ARCHITECTURE

EMAIL MESSAGE OBJECT

▸ To

▸ From

▸ CC

▸ Subject

▸ Template

▸ Data

ARCHITECTURE

INTERFACE TO EXTERNAL
SERVICE

CODE TALKS TO
EXTERNAL SERVICE

CODE THAT NEEDS TO
SEND AN EMAIL

CODE TALKS TO
EXTERNAL SERVICE

CODE TALKS TO
EXTERNAL SERVICE

ARCHITECTURE

INTERFACE TO EXTERNAL
SERVICE

CODE TALKS TO
EXTERNAL SERVICE

CODE THAT NEEDS TO
SEND AN EMAIL

ARCHITECTURE

INTERFACE TO EXTERNAL
SERVICE

CODE THAT NEEDS TO
SEND AN EMAIL

ARCHITECTURE

INTERFACE TO EXTERNAL
SERVICE

CODE THAT NEEDS TO
SEND AN EMAIL

TEST DOUBLE

ARCHITECTURE

SERVICE LAYER
CODE TALKS TO

EXTERNAL SERVICE

CODE

CONTROLLER

ARCHITECTURE

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

ARCHITECTURE

BUSINESS LOGIC

$
CONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

ARCHITECTURE

BUSINESS LOGIC

ARCHITECTURE

BUSINESS LOGIC
TEST ENTRY

POINT

TEST DOUBLE

TEST DOUBLE

ARCHITECTURE

FAKE EMAIL GATEWAY
class FakeEmailGateway implements EmailGatewayInterface
{

 private $emailMessages = [];

 public function sendEmail(EmailMessage $message){
 $this->emailMessages[] = $message;
 }

 public function findBy($to, $template): array {
 … return EmailMessage meeting criteria …
 }
}

ARCHITECTURE

REGISTER USER TEST 1
class RegisterUserTest extends TestCase
{

 public function testRegistration() {

 $userService = $this->container->getUserService();

 $success = $userService->registerUser(
 “dave@lampbristol.com”, “Dave”, “Passw0rd”);

 $this->assertTrue($success);

 …

mailto:dave@lampbristol.com

ARCHITECTURE

REGISTER USER TEST 2
…
 $emailGateway = $this->container->getEmailGateway();

 $emailMessages = $emailGateway->find(
 “dave@lampbristol.com”, “REGISTRATION”);

 $this->assertCount(1, $emailMessages);

 $data = $emailMessage->getData();
 $confirmationToken = $data[‘confirmationToken’];

 $success = $userService->completeRegistration(
 $confirmationToken);

 $this->assertTrue($success);

STOP AND ADMIRE

ARCHITECTURE

BUSINESS LOGIC
TEST ENTRY

POINT

TEST DOUBLE

TEST DOUBLE

ARCHITECTURE

BUSINESS LOGIC

$
CONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

TEST ENTRY
POINT

TAKE AWAY

ARCHITECTURE IS VERY IMPORTANT

▸ High correlation between easy to test and good
architecture.

▸ A code base isn’t difficult to test, it’s poorly architected.

ARCHITECTURE

RETURNING TO OUR PASSWORD VALIDATOR: 1
class PasswordValidatorTest extends TestCase
{

 public function testUpdatePassword() {

 … create $user with password ‘Passw1rd’ …

 $userService = $this->container->getUserService();

 $userService->updatePassword($user, ‘Passw2rd’);
 $userService->updatePassword($user, ‘Passw3rd’);
 $userService->updatePassword($user, ‘Passw4rd’);

 …

ARCHITECTURE

RETURNING TO OUR PASSWORD VALIDATOR: 2
…

 $success = $userService->updatePassword(
 $user, ‘Passw1rd’);
 $this->assertFalse($success);

 $success = $userService->updatePassword(
 $user, ‘Passw5rd’);
 $this->assertTrue($success);

 $success = $userService->updatePassword(
 $user, ‘Passw1rd’);
 $this->assertTrue($success);

THE BIG
INTEGRATION TEST

ARCHITECTURE

CONSTRUCTING OUR USER OBJECT

 … create $user with password ‘Passw1rd’ …

BUILDING TEST OBJECTS

HOW DO WE BUILD THE TEST USER OBJECT?

▸ Hand build what is required

▸ Seed the database

▸ Object mother

▸ Test Builder

BUILDING TEST OBJECTS

HAND BUILDING
 $userService = $this->container->getUserService();
 $userService->registerUser(
 “dave@lampbristol.com”, “Dave”, “Passw0rd”);

 $emailGateway = $this->container->getEmailGateway();

 $emailMessages = $emailGateway->find(
 “dave@lampbristol.com”, “REGISTRATION”);

 $data = $emailMessage->getData();
 $confirmationToken = $data[‘confirmationToken’];

 $userService->completeRegistration(
 $confirmationToken);

BUILDING TEST OBJECTS

HAND BUILDING
 $userService = $this->container->getUserService();
 $userService->registerUser(
 “dave@lampbristol.com”, “Dave”, “Passw0rd”);

 $emailGateway = $this->container->getEmailGateway();

 $emailMessages = $emailGateway->find(
 “dave@lampbristol.com”, “REGISTRATION”);

 $data = $emailMessage->getData();
 $confirmationToken = $data[‘confirmationToken’];

 $userService->completeRegistration(
 $confirmationToken);

XXX

BUILDING TEST OBJECTS

SEEDING A DATABASE
users:
 - name: Dave
 email: dave@lampbristol.com
 password: Passw1rd

 - name: Sarah
 email: sarah@example.com
 password: Passw5rd

BUILDING TEST OBJECTS

SEEDING A DATABASE
users:
 - name: Dave
 email: dave@lampbristol.com
 password: Passw1rd

 - name: Sarah
 email: sarah@example.com
 password: Passw5rd

X

BUILDING TEST OBJECTS

SEEDING A DATABASE IS AN APPROXIMATION

BUILDING TEST OBJECTS

SEEDING A DATABASE IS AN APPROXIMATION

BUILDING TEST OBJECTS

SEEDING A DATABASE IS AN APPROXIMATION

BUILDING TEST OBJECTS

OBJECT MOTHER

$userObjectMother = $this->getUserObjectMother();

$user = $userObjectMother->getDave();

// User will have default values for name, email, etc

ARCHITECTURE

TEST BUILDER: 1

 $userBuilder = $this->getUserBuilder();
 $user = $userBuilder->build();

 // User will have default values for name, email, etc

ARCHITECTURE

USING A TEST BUILDER (2)

 $userBuilder = $this->getUserBuilder();
 $user = $userBuilder
 ->name(“David”)
 ->password(“Passw4rd”)
 ->previousPasswords([
 “Passw1rd”,
 “Passw2rd”,
 “Passw3rd”,
])
 ->build();

BUILDING TEST OBJECTS

OBJECT MOTHER AND TEST BUILDER BENEFITS

▸ Single place where test business object built

▸ Easy to find

▸ Easy to update

▸ Defer to other Object Mothers / Test Builders

TAKE AWAY

USE OBJECT MOTHER AND TEST BUILDER PATTERNS

▸ Reduce coupling between test and production code

▸ Help make your tests more resilient to change

▸ Lowers maintenance cost

▸ Increases our coverage

FAMOUS 5 VS
AWKWARD DUO VS
THE BIG INTEGRATION TEST?

ASSESS VALUE OF TESTS.
REMOVE ONES THAT ARE
DUPLICATED (AND OFFER NO
BENEFIT)

MORE TESTING

CAN WE AUTOMATE ANYTHING ELSE?

EMAIL
GATEWAY

MORE TESTING

CAN WE AUTOMATE ANYTHING ELSE?

EMAIL
GATEWAYCLI

MORE TESTING

CAN WE AUTOMATE ANYTHING ELSE?

php bin/console test:emailgateway —-to dave@lampbristol.com

Sending email:
To [dave@lampbristol.com]
From [test@lampbristol.com]
CC [dave+1@lampbristol.com]
Subject [Test email 2016-02-08 19:37]
Body [Hi,
 This is a test email.
 Sent at 2016-02-08 19:37.
 From your tester]

QUICK RECAP

WHY DO WE NEED A TEST SUITE

▸ Prove code works

▸ Prevent against regression

▸ Allow safe refactoring of code

QUICK RECAP

OUR IDEAL TEST SUITE WOULD BE…

▸ Fast to execute

▸ High coverage

▸ Low maintenance

QUICK RECAP

EVERY THING IS A COMPROMISE

▸ Nothing is black and white

QUICK RECAP

TO MAKE A GOOD TEST SUITE

▸ Requires skill

▸ Good code architecture

▸ Reduce coupling between tests and code under test:

▸ Use mocks only when needed

▸ Use patterns like Object Mother and Test Builder

QUESTIONS

ARCHITECTURE

BUSINESS LOGIC

$
CONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

