
A story…
The Git Eureka Moment

by Dave Liddament (aged 38 and a few days)

First a story…

… to be continued…

Pay attention!

@DaveLiddament

Dave Liddament @daveliddament

Lamp Bristol

15+ years software development (PHP, Java, Python, C)

Organise PHP-SW user group and Bristol PHP Training

Poetic licence

Is this talk for you?

Git
experience

Is this talk for you?

Git
experience

None

Is this talk for you?

Git
experience

None

Is this talk for you?

Git
experience

None

Git blackbelt

Is this talk for you?

Git
experience

None

Git blackbelt

Is this talk for you?

Git
experience

None

Git blackbelt

Somewhere in-between

Git Commit

Creating a commit

Create a new file: days.txt

Creating a commit

git status

On branch master

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 days.txt

nothing added to commit but untracked files present (use "git add" to track)

Creating a commit

On branch master

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 days.txt

nothing added to commit but untracked files present (use "git add" to track)

Creating a commit

On branch master

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 days.txt
nothing added to commit but untracked files present (use "git add" to track)

Creating a commit

git add days.txt

Creating a commit

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: days.txt

Creating a commit

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: days.txt

Creating a commit

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: days.txt

Creating a commit

git commit

Creating a commit

[master adfabb7] ADD days
 1 file changed, 7 insertions(+)
 create mode 100644 days.txt

Creating a commit

A

Added a file
 containing the days

of the week

Creating a commit

Untracked

Creating a commit

Untracked

Staged for commit

git add days.txt

Creating a commit

Untracked

Staged for commit

Commit

git commit

Creating a commit (2)

Update an existing file: days.txt

Creating a commit (2)

On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: days.txt

no changes added to commit (use "git add" and/or "git commit -a")

Creating a commit (2)

On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: days.txt

no changes added to commit (use "git add" and/or "git commit -a")

Creating a commit (2)

On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: days.txt
no changes added to commit (use "git add" and/or "git commit -a")

Creating a commit (2)

git add days.txt

Creating a commit (2)

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: days.txt

Creating a commit (2)

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: days.txt

Creating a commit (2)

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: days.txt

Creating a commit (2)

git commit

Creating a commit (2)

[master 6e88dad] FIX typo
 1 file changed, 1 insertion(+), 1 deletion(-)

Creating a commit (2)

A

Added a file
 containing the days

of the week

B

Fixed typo

Creating a commit (2)

Working tree

Creating a commit (2)

Working tree

Staged for commit

git add days.txt

Creating a commit (2)

Staged for commit

Creating a commit (2)

Staged for commit

Commit

git commit

Take away

Take away
git status

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: days.txt

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: months.txt

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 seasons.txt

Take away

Untracked

Working tree

Staged for commit

Commit

Take away

Untracked

Working tree

Staged for commit

Commit

git add

Take away

Untracked

Working tree

Staged for commit

Commit

git add

git commit

Take away

Untracked

Working tree

Staged for commit

Commit

git add

git commit

git commit -a

Viewing changes

Viewing changes

Working tree

Staged for commit

git diff

Viewing changes

Working tree

Staged for commitgit diff --cached

What is a commit?

Warning

This is a simplification

What is a commit?

A B C

What is a commit?
C

What is a commit?
C

1. Metadata:

What is a commit?
C

1. Metadata:

Author: Dave Liddament <dave@lampbristol.com>
Date: Mon Mar 13 16:02:32 2017 +0000

 FIX typo

What is a commit?
C

2. Patch:

What is a commit?
C

2. Patch: diff --git a/days.txt b/days.txt
index fe20ee3..1aee041 100644
--- a/days.txt
+++ b/days.txt
@@ -1,6 +1,6 @@
 Monday
 Tuesday
-Wendesday
+Wednesday
 Thursday
 Friday
 Saturday

What is a commit?
C

3. Parent commit(s):

What is a commit?
C

3. Parent commit(s):

A B C

What is a commit?
C

3. Parent commit(s):

A B C

What is a commit?
C

1. Metadata
2. Patch
3. Parent commits(s)

SHA: 6e88dad5d769b921d1a700bee8d57a7a82d67f29

What is a branch?

A B

master

What is a branch?

A B C

master

What is a branch?
git log -n1

What is a branch?
git log -n1

commit 6e88dad5d769b921d1a700bee8d57a7a82d67f29
Author: Dave Liddament <dave@lampbristol.com>
Date: Mon Nov 13 16:02:32 2017 +0000

 FIX typo

What is a branch?
git log -n1

commit 6e88dad5d769b921d1a700bee8d57a7a82d67f29
Author: Dave Liddament <dave@lampbristol.com>
Date: Mon Nov 13 16:02:32 2017 +0000

 FIX typo

cat .git/refs/heads/master

What is a branch?
git log -n1

commit 6e88dad5d769b921d1a700bee8d57a7a82d67f29
Author: Dave Liddament <dave@lampbristol.com>
Date: Mon Nov 13 16:02:32 2017 +0000

 FIX typo

cat .git/refs/heads/master

6e88dad5d769b921d1a700bee8d57a7a82d67f29

What is a branch?

A B C

master feature/seasons

feature/months

Branching

A B

master

Branching

A B

master

git checkout -b amazing-new-feature master

Branching

A B

master

git checkout -b amazing-new-feature master

amazing-new-feature

Branching

A B

C

amazing-new-feature

master

Branching

A B

C D

master

amazing-new-feature

Branching

A B

C D E

master

amazing-new-feature

Merging

A B

C D E

master

amazing-new-feature

Merging

A B

C D E

master

amazing-new-featuregit checkout master

Merging

A B

C D E

master

amazing-new-featuregit merge amazing-new-feature

Merging

A B

C D E

master

amazing-new-feature

Merging

A B

C D E

master

amazing-new-featureUpdating 6e88dad..7bd356e
Fast-forward
 seasons.txt | 2 ++
 1 file changed, 2 insertions(+)
 create mode 100644 seasons.txt

6e88dad 7bd356e

Merging (2)

A

B C

amazing-new-feature

D

master

Merging (2)

A

B C

amazing-new-feature

D

E

master

F

Merging (2)

A

B C

amazing-new-feature

D

E

master

F

git checkout master

Merging (2)

A

B C

amazing-new-feature

D

E

master

F

git merge amazing-new-feature

Merging (2)

A

B C

amazing-new-feature

D

E

master

F

G

What is a commit?

1. Metadata
2. Patch
3. Parent commits(s)

Merging (2)

A

B C D

E

master

F

G

git log

commit 3ba057fab8af25a9345a63e63690d8219cfe4b46
Merge: c7c5e8a f239725
Author: Dave Liddament <dave@lampbristol.com>
…

c7c5e8a

f239725

3ba057f

Merging (2)

A

B C D

E

master

F

G

git log

commit 3ba057fab8af25a9345a63e63690d8219cfe4b46
Merge: c7c5e8a f239725
Author: Dave Liddament <dave@lampbristol.com>
…

c7c5e8a

f239725

3ba057f

Merging (2)

A

B C D

E

master

F

G

git log

commit 3ba057fab8af25a9345a63e63690d8219cfe4b46
Merge: c7c5e8a f239725
Author: Dave Liddament <dave@lampbristol.com>
…

c7c5e8a

f239725

3ba057f

Merging (2)

A

B C D

E

master

F

G

git log

commit 3ba057fab8af25a9345a63e63690d8219cfe4b46
Merge: c7c5e8a f239725
Author: Dave Liddament <dave@lampbristol.com>
…

c7c5e8a

f239725

3ba057f

Merge conflicts

A

B

days.txt
 Monday
-tuseday
+Tuseday
 Wednesday

Merge conflicts

A

B

C

days.txt
 Monday
-tuseday
+Tuseday
 Wednesday

days.txt
 Monday
-tuesday
+tuesday
 Wednesday

Merge conflicts

A

B

C

days.txt
 Monday
-tuseday
+Tuseday
 Wednesday

days.txt
 Monday
-tuesday
+tuesday
 Wednesday

?

Merge conflicts

Auto-merging days
CONFLICT (content): Merge conflict in days.txt
Automatic merge failed; fix conflicts and then commit the result.

Merge conflicts
cat days.txt

Monday
<<<<<<< HEAD
Tuseday
=======
tuesday
>>>>>>> fix1
Wednesday

Merge conflicts

cat days.txt

Monday
Tuesday
Wednesday

Merge conflicts

git add days.txt

git commit

Merge conflicts

A

B

C

D

days.txt
 Monday
-tuseday
+Tuseday
 Wednesday

days.txt
 Monday
-tuseday
+tuesday
 Wednesday

days.txt
 Monday
 Tuesday
 Wednesday

Rebase

A

B C

amazing-new-feature

D

E

master

F

Rebase

A

B C

amazing-new-feature

D

E

master

F

git rebase master

Rebase

A

B C

amazing-new-feature

D

E

master

F

Rebase

A

B C

amazing-new-feature

D

E

master

F

Rebase

A

B C

amazing-new-feature

D

E

master

F

Rebase

A

B’ C’

amazing-new-feature

D’E

master

F

B C D

Rebase

A

B’ C’

amazing-new-feature

D’E

master

F

Rebase

A

B’ C’

amazing-new-feature

D’E

master

F

B C D

What is a commit?

1. Metadata
2. Patch
3. Parent commits(s)

What is a commit?

1. Metadata
2. Patch
3. Parent commits(s)

B parent is A
B’ parent is F

What is a commit?

1. Metadata
2. Patch
3. Parent commits(s)

B parent is A
B’ parent is F

B’ has different hash to B

Rebase

A

B’ C’

amazing-new-feature

D’E

master

F

B C D

Rebase

A

B’ C’

amazing-new-feature

D’E

master

F

B C D

Conflicts with rebase

A

E

master

F

B C D

amazing-new-feature

Conflicts with rebase

A

E

master

F

B C D

amazing-new-feature

Conflicts with rebase

A

E

master

F

B C D

amazing-new-feature
git rebase master

Conflicts with rebase

A

B’E

master

F

B C D

Conflicts with rebase

A

B’E

master

F

B C D

?

Conflicts with rebase
git rebase master

First, rewinding head to replay your work on top of it...
Applying: FIX 2
Using index info to reconstruct a base tree...
M days.txt
Falling back to patching base and 3-way merge...
Auto-merging days.txt
CONFLICT (content): Merge conflict in days.txt
error: Failed to merge in the changes.
Patch failed at 0001 FIX 2
The copy of the patch that failed is found in: .git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

Conflicts with rebase
git rebase master

First, rewinding head to replay your work on top of it...
Applying: FIX 2
Using index info to reconstruct a base tree...
M days.txt
Falling back to patching base and 3-way merge...
Auto-merging days.txt
CONFLICT (content): Merge conflict in days.txt
error: Failed to merge in the changes.
Patch failed at 0001 FIX 2
The copy of the patch that failed is found in: .git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

Conflicts with rebase
git rebase master

First, rewinding head to replay your work on top of it...
Applying: FIX 2
Using index info to reconstruct a base tree...
M days.txt
Falling back to patching base and 3-way merge...
Auto-merging days.txt
CONFLICT (content): Merge conflict in days.txt
error: Failed to merge in the changes.
Patch failed at 0001 FIX 2
The copy of the patch that failed is found in: .git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

Rebase conflicts
cat days.txt

Monday
<<<<<<< HEAD
Tuseday
=======
tuesday
>>>>>>> fix1
Wednesday

Rebase conflicts

cat days.txt

Monday
Tuesday
Wednesday

Rebase conflicts

git add days.txt

git rebase --continue

Conflicts with rebase

A

B’ C’E

master

F

B C D

Conflicts with rebase

A

B’ C’

amazing-new-feature

D’E

master

F

B C D

Conflicts

Cherry pick

A

E

master

F

B C D

Cherry pick

A

E

master

F

B C D

Cherry pick

A

E

master

F

B C D

3eeab4

Cherry pick

A

E

master

F

B C D

3eeab4

git cherry-pick 3eeab4

Cherry pick

A

E

master

F

B C D

3eeab4

Cherry pick

A

E

master

F

B C D

3eeab4

Cherry pick

A

E

master

F

B C D

3eeab4

C’

Cherry pick

A

E

master

F

B C D

3eeab4

C’

129eec

Rewriting history

A B C D E

Rewriting history

A B C D E

7f66b2b

git rebase -i 7f66b2b

Rewriting history
pick 6b9dde1 Message for commit B
pick f1c4ebc Message for commit C
pick f10a354 Message for commit D
pick 6f46cd9 Message for commit E

Rebase 7f66b2b..6f46cd9 onto 7f66b2b (4 command(s))

Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit

These lines can be re-ordered; they are executed from top to bottom.

Rewriting history
pick 6b9dde1 Message for commit B
pick f1c4ebc Message for commit C
pick f10a354 Message for commit D
pick 6f46cd9 Message for commit E

Rebase 7f66b2b..6f46cd9 onto 7f66b2b (4 command(s))

Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit

These lines can be re-ordered; they are executed from top to bottom.

Rewriting history
pick 6b9dde1 Message for commit B
pick f1c4ebc Message for commit C
pick f10a354 Message for commit D
pick 6f46cd9 Message for commit E

Rebase 7f66b2b..6f46cd9 onto 7f66b2b (4 command(s))

Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit

These lines can be re-ordered; they are executed from top to bottom.

Rewriting history

pick 6b9dde1 Message for commit B
pick f1c4ebc Message for commit C
drop f10a354 Message for commit D
pick 6f46cd9 Message for commit E

Rewriting history

A B C E

Rewriting history

A B C D E

Rewriting history

A B C D E

A D’ C’ B’ E’

Rewriting history
pick 6b9dde1 Message for commit B
pick f1c4ebc Message for commit C
pick f10a354 Message for commit D
pick 6f46cd9 Message for commit E

Rewriting history
pick 6b9dde1 Message for commit B
pick f1c4ebc Message for commit C
pick f10a354 Message for commit D
pick 6f46cd9 Message for commit E

pick f10a354 Message for commit D
pick f1c4ebc Message for commit C
pick 6b9dde1 Message for commit B
pick 6f46cd9 Message for commit E

Rewriting history

A B C D E

Rewriting history

A B C D E

A D’ C’ B’ E’

Rewriting history

A B C D E

A D’ C’ B’ E’

Rewriting history

A B C D E

Rewriting history

edit 6b9dde1 Message for commit B
pick f1c4ebc Message for commit C
pick f10a354 Message for commit D
pick 6f46cd9 Message for commit E

Rewriting history

A B’ C’ D’ E’

Rewriting history

A B’ C’ D’ E’

Rewriting history

A B C D X E’

Rewriting history

A B C D + E

This is all very well,
but…

Why this?

Untracked

Working tree

Staged for commit

Commit

Why rewrite history?

Make small commits that are
easier to review.

Commit history can tell a story.

Single commit

FEATURE: Implement new pricing code and refactor old
code to use this.

Many commits
COMPOSER: Add joe-blogs/pricing package
ADD: New domain model for price
ADD: Business logic for simple pricing
ADD: Ability to use a gift voucher
DEPRECATE: Legacy price calculation ad
REFACTOR: Pricing endpoint to use new pricing logic
REFACTOR: Batch job to use new pricing logic
REMOVE: Deprecated classes

Commits should be small

10 lines of code = 10 issues

500 lines of code = “all fine”

Be careful rewriting
history

Remote repositories

Remote repositories
A B

master

origin

Remote repositories
A B

master

A B

origin

master

origin/master

local

Updating local
repository

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

git fetch

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

C

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

C

git merge origin/master

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

C

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

C
Fast forward merge

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

git pull origin master

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

C

Remote repositories
A B

master

A B

origin

master

origin/master

local

Remote repositories
A B

master

A B

origin

master

origin/master

local D

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

git fetch

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

C

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

git merge
C

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

C

E

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

git pull origin master

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

C

E

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

git pull —rebase origin master

Remote repositories
A B

master

A B

origin

origin/master

local

C

C

master

D’

Updating remote
repository

Remote repositories
A B

master

A B

origin

master

origin/master

local C

Remote repositories
A B

master

A B

origin

master

origin/master

local C

git push origin master

Remote repositories
A B

master

A B

origin

master

origin/master

local C

C

Remote repositories
A B

master

A B

origin

master

origin/master

local

Remote repositories
A B

master

A B

origin

master

origin/master

local D

C

Remote repositories
A B

master

A B

origin

master

origin/master

local D

C

git push origin master

Remote repositories

git push origin master

To git@bitbucket.org:demo/demo.git
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'git@bitbucket.org:demo/demo.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Remote repositories

git push origin master

To git@bitbucket.org:demo/demo.git
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'git@bitbucket.org:demo/demo.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Remote repositories

git push origin master

To git@bitbucket.org:demo/demo.git
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'git@bitbucket.org:demo/demo.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

C

E

git pull origin master

Remote repositories
A B

master

A B

origin

master

origin/master

local

C

D

C

E

git push origin master

Remote repositories

A B

master

A B

origin

master

origin/master

local D

C

E

D

C

E

Detached heads

What is a branch?

A B

master

cat .git/refs/heads/master

6e88dad5d769b921d1a700bee8d57a7a82d67f29

What is the current branch?

cat .git/HEAD

ref: refs/heads/master

What is a branch?

A B

master

cat .git/refs/heads/master

6e88dad5d769b921d1a700bee8d57a7a82d67f29

What is the current branch?

git checkout fix1

cat .git/HEAD

ref: refs/heads/fix1

git checkout

git checkout <branch name>

git checkout <hash>

Detached head
git checkout f9f4b3d

Note: checking out 'f9f4b3d'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again.
Example:

 git checkout -b <new-branch-name>

HEAD is now at f9f4b3d... initial check in

Detached head
git checkout f9f4b3d

Note: checking out 'f9f4b3d'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again.
Example:

 git checkout -b <new-branch-name>

HEAD is now at f9f4b3d... initial check in

Detached head
git checkout f9f4b3d

Note: checking out 'f9f4b3d'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again.
Example:

 git checkout -b <new-branch-name>
HEAD is now at f9f4b3d... initial check in

Detached head

git status

HEAD detached at f9f4b3d
nothing to commit, working directory clean

Detached head

cat .git/HEAD

f9f4b3d7f21ca6e6aab3c1d9cfd8d0bf05bc78a7

What happens to old
commits?

Old commits

A

B’ C’

amazing-new-feature

D’E

master

F

B C D

Old commits

A

B’ C’

amazing-new-feature

D’E

master

F

B C D

… story continues…

What happens if I delete a
branch?

A

amazing-new-featuremaster

B C D

What happens if I delete a
branch?

A

master

B C D

What happens if I delete a
branch?

A

master

B C D

What happens if I delete a
branch?

A

master

B C D

a234cf

I can get it back…

A

master

B C D

a234cf

git checkout -b found-my-work a234cf

I can get it back…

A

master

B C D

found-my-work

But I don’t know the hash
of the deleted branch….

… to be continued…

Reflog

Reflog

git reflog
f9f4b3d HEAD@{0}: checkout: moving from fix1 to f9f4b3d
f239725 HEAD@{1}: checkout: moving from master to fix1
f9f4b3d HEAD@{2}: checkout: moving from fix2 to master
1c12f98 HEAD@{3}: rebase -i (finish): returning to refs/heads/fix2
1c12f98 HEAD@{4}: rebase -i (pick): ADD sun
a40867d HEAD@{5}: rebase -i (pick): ADD sat
3cd7f7e HEAD@{6}: commit: ADD boo
f1c4ebc HEAD@{7}: cherry-pick: fast-forward
…
f9f4b3d HEAD@{30}: commit (initial): initial check in

Reflog found the
branch

Summary

Untracked

Working tree

Staged for commit

Commit

What is a commit?

1. Metadata
2. Patch
3. Parent commits(s)

SHA: 6e88dad5d769b921d1a700bee8d57a7a82d67f29

What is a branch?

A B C

master feature/seasons

feature/months

Actions

• Merge

• Rebase

• Cherry pick

How did the story
end?

Questions

