
Dave Liddament

Decoupling with Events
@phpsw WED 12TH October 2016

@LAMPBRISTOL

@LAMPBRISTOL

Why decoupling?

- Coupling refers to the degree of direct knowledge that one component has of another.

-Loose coupling or decoupling is reducing the that knowledge to the least possible .

-Loosely coupled code is easier to understand, test and extends.

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from form;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- Imagine we have some code that registers a new user.

- The controller is dealing with a website using HTML forms.

- How many have seen controllers like this?

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from form;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- Imagine we have some code that registers a new user.

- The controller is dealing with a website using HTML forms.

- How many have seen controllers like this?

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from form;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- Imagine we have some code that registers a new user.

- The controller is dealing with a website using HTML forms.

- How many have seen controllers like this?

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from form;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- Imagine we have some code that registers a new user.

- The controller is dealing with a website using HTML forms.

- How many have seen controllers like this?

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from form;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- Imagine we have some code that registers a new user.

- The controller is dealing with a website using HTML forms.

- How many have seen controllers like this?

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from form;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- Imagine we have some code that registers a new user.

- The controller is dealing with a website using HTML forms.

- How many have seen controllers like this?

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from form;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- Imagine we have some code that registers a new user.

- The controller is dealing with a website using HTML forms.

- How many have seen controllers like this?

@LAMPBRISTOL

What’s wrong with that?

Tightly coupled code.

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from request;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- What if we wanted a REST API (for a mobile app) as well as a web interface. It’s not easy. The common code we need to create a new user is in the middle of the controller code.

- What happens if we want to change how we send emails to move away from Mandrill (again difficult with the code on the screen).

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from request;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- What if we wanted a REST API (for a mobile app) as well as a web interface. It’s not easy. The common code we need to create a new user is in the middle of the controller code.

- What happens if we want to change how we send emails to move away from Mandrill (again difficult with the code on the screen).

@LAMPBRISTOL

User Registration Code

class UserController
{
 public function registerUserAction($request)
 {
 Extract data from request;

 Create a new user in the database;

 Send confirmation email via Mandrill;

 return HTML with welcome message;
 }
}

- What if we wanted a REST API (for a mobile app) as well as a web interface. It’s not easy. The common code we need to create a new user is in the middle of the controller code.

- What happens if we want to change how we send emails to move away from Mandrill (again difficult with the code on the screen).

@LAMPBRISTOL

We want loosely couple code

@LAMPBRISTOL

User Registration Code - UserRegistrationService

interface UserRegistrationServiceInterface
{
 /**
 * Registers a new user
 *
 */
 public function registerUser(User $user);
}

- Remove user registration logic from controller.

-Move it to a class that implements this interface. All controller cares about is registering a new user not how the new user is registered.

-This service can be reused by a controller for a REST endpoint , or even importing users via a CLI.

@LAMPBRISTOL

User Registration Code - Improved UserController

class UserController
{
 public function registerUserAction($request)
 {
 $user = data from form;

 $this->userRegistrationService->
 registerUser($user);

 return HTML with welcome message;
 }
}

- Controller now takes advantage of user registration service.

@LAMPBRISTOL

User Registration Code - Improved UserController

class UserController
{
 public function registerUserAction($request)
 {
 $user = data from form;

 $this->userRegistrationService->
 registerUser($user);

 return HTML with welcome message;
 }
}

- Controller now takes advantage of user registration service.

@LAMPBRISTOL

User Registration Code - Improved UserController

class UserController
{
 public function registerUserAction($request)
 {
 $user = data from form;

 $this->userRegistrationService->
 registerUser($user);

 return HTML with welcome message;
 }
}

- Controller now takes advantage of user registration service.

@LAMPBRISTOL

User Registration Code - EmailGateway

interface EmailGatewayInterface
{
 /**
 * Sends an email
 *
 */
 public function sendEmail(EmailMessage $email);
}

- User registration code makes use of sending emails. All it cares about is that an email is sent, not how, or which email gateway is used. This interface hides that detail.

-Code is much more decoupled

@LAMPBRISTOL

Events for decoupling

Events can be used for decoupling.

It is not appropriate in all cases but it’s a tool you should have in your tool box.

@LAMPBRISTOL

What is an Event?

Event is an action recognised by software that may be handled by software.

Examples include:

- Mouse click

- New User Registration

- Order placed

-

Event
Type

Extra data

No logic

@LAMPBRISTOL

Event

Type: What does this event represent (e.g. NewUserRegistrationEvent)

Extra Data: Information passed by the event source to the event handler

The object should only hold data, there should be no logic in it.

Event processing

Dispatcher

Listener

Synchronous

(Stop Propagation flag)

(Priority)

@LAMPBRISTOL

- Events are ‘created’ and sent to the event processing framework via a ‘dispatcher’

- Code that responds to events are ‘Listeners’

- For the purpose of examples used in this talk events are processed synchronously

- Following are optional - not all event systems support these:

- Events might have a stop propagation flag. Once set and subsequent listeners are not called. Instead flow of code returns to the line after event was dispatched.

- Event listeners may have a priority. High priority event listeners are run first.

@LAMPBRISTOL

Observer

Event
source

Event
Listener

Event
Listener

Event
Listener

- Event listeners register themselves with the event source (or dispatcher)

- Listeners much know about the source

- Event source doesn’t really care who is listening or have any knowledge of what the listeners do

- Some level of decoupling (which might be enough for the problem you’re trying to solve)

- E.g. listening to click events on a DOM element in JavaScript

@LAMPBRISTOL

Event bus

Event
source

Event
Listener

Event
Listener

Event
Listener

Event bus

- Event bus mediates between dispatchers and listeners.

- Dispatcher pushes messages to the event bus

- Listeners register their interest in events of a certain type.

- Event bus passes events from the dispatcher to the interested listeners

- Fully decoupled

- Dispatcher doesn’t know who, if anyone, is listening

- Listeners done’t know who is dispatching events.

@LAMPBRISTOL

Events in action

We will look at a few examples. The first being a Javascript one and the 2nd (and 3rd if there is time) PHP ones.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3

Event bus

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

Map 1

Javascript example

Map 2 Map 3 Map 4

Event bus

- Each map showed a different data layer (e.g. perception of crime, actual crime, etc)

- Each map had to show the same geographic area (so comparisons could be made).

- A user could interact with any map.

- Moving map 1 to the left meant the other maps must also move to the left.

- Moving map 2 up meant the other maps must also move up.

- Each map registered itself with the event bus.

- Each map could dispatch and listen for MoveMapEvent

- One map would move, all the others would update.

- This could scale to any number of maps, they just needed registering with the event bus.

@LAMPBRISTOL

User Registration Example

Remember our user registration example from the start. This is common code so we created a user library registration library.

@LAMPBRISTOL

User Registration Library

It was used on lots of projects. All the customers are happy..

@LAMPBRISTOL

I’d really like to be able to…

- Then one day a customer wants to be able to do something extra after a user has completed registration. This functionality is specific only to this one customer. Let’s say they wanted to send newly
registered users a personalised discount voucher.

- How do we do that without having lots of conditional code in our library?

@LAMPBRISTOL

NewRegisteredUserEvent

class NewRegisteredUserEvent
{
 private $user;

 public function __construct(User $user) {
 $this->user = $user;
 }

 public function getUser() {
 return $user;
 }

}

We could create a event that gets dispatched after a new user has been registered. It would hold details about the newly registered user

@LAMPBRISTOL

Update to register user service

… existing code …

$event = new NewRegisteredUserEvent($newUser);
$this->eventDispatcher->dispatch($event);

The register user service is updated to dispatch an this event after the new user has been created.

@LAMPBRISTOL

Listener

class VoucherCodeSender {

 public function onNewUserRegistration($event){
 $newUser = $event->getUser();

 … code to send voucher to user …

 }

}

Code can listen for these events and hook in extra functionality at these points. E.g. VoucherCodeSender

@LAMPBRISTOL

Config to register event listener (Symfony)

voucher_code_sender:
 class: AppBundle/Listener/VoucherCodeSender
 autowire: true
 tags:
 -{name:kernel_event_listener, event:new.user.registration}

Frameworks might provide hooks to achieve this easily. The code above is from Symfony configuration. Only the code in yellow is additional code to wire up the event listener on the previous page.

@LAMPBRISTOL

The ‘O’ in SOLID

We’ve used events to make our code open to extension but closed to modification. This is the Open/Closed principle from solid.

Other customers can come along with similar requirements, all the need to do is hook to to the NewRegisteredUserEvent.

Pros
Decoupled code

Good for extension

@LAMPBRISTOL

Cons
Less obvious

Harder to debug

Maybe no one is listening

@LAMPBRISTOL

Summary

Decoupling is good

Events can help

Good for extension points

No silver bullet

Only just the start

@LAMPBRISTOL

@LAMPBRISTOL

https://github.com/symfony/event-dispatcher

Questions

https://github.com/symfony/event-dispatcher

@LAMPBRISTOL

Bonus material

Symfony HTTP
kernel events

Request

Controller

View

Response

Finish Request

Terminate

Exception
@LAMPBRISTOL

These are events that get dispatched by the HTTP kernel when it is processing an HTTP request. You can attach your own listeners to modify behaviour at each step.

@LAMPBRISTOL

Sending an email

Start

End

Imagine the user registration process. We create a new recored in the database (quick).

Then send an email, which will probably mean a network request (slow).

User has to wait around for a long time.

@LAMPBRISTOL

Sending an email - improved

Start

End

We want to save user in database. The finish the HTTP request and finally send the email without the client having to wait around.

We can hook into Symfony terminate event. This is called after the response has been sent to the HTTP request.

Client is waiting around for a fraction of the time they were previously.

@LAMPBRISTOL

EmailGateway

interface EmailGatewayInterface
{
 /**
 * Sends an email
 *
 */
 public function sendEmail(EmailMessage $email);
}

Reminder of our EmailGateway

@LAMPBRISTOL

EmailGateway Mandrill implementation

class MandrillEmailGateway
 implements EmailGatewayInterface
{

 public function sendEmail(EmailMessage $email)
 {
 // Code to send email via Mandrill
 }

}

A possible implementation that actually sends the email.

@LAMPBRISTOL

EmailGateway terminate event implementation
class OnTerminateEmailGateway
 implements EmailGatewayInterface {

 private $emails = [];

 public function sendEmail(EmailMessage $email) {
 $this->emails[] = $email;
 }

 public function onTerminate() {
 foreach($this->emails as $email) {
 $this->emailGateway->sendEmail($email);
 }
 }

Updated implementation for sending emails during the terminate phase of Symfony kernel.

- Keep a list of all emails to send

- Send email adds email to send to the list

- On terminate listener (called with the terminate event) loops through emails and actually sends them.

@LAMPBRISTOL

EmailGateway terminate event implementation
class OnTerminateEmailGateway
 implements EmailGatewayInterface {

 private $emails = [];

 public function sendEmail(EmailMessage $email) {
 $this->emails[] = $email;
 }

 public function onTerminate() {
 foreach($this->emails as $email) {
 $this->emailGateway->sendEmail($email);
 }
 }

Updated implementation for sending emails during the terminate phase of Symfony kernel.

- Keep a list of all emails to send

- Send email adds email to send to the list

- On terminate listener (called with the terminate event) loops through emails and actually sends them.

@LAMPBRISTOL

EmailGateway terminate event implementation
class OnTerminateEmailGateway
 implements EmailGatewayInterface {

 private $emails = [];

 public function sendEmail(EmailMessage $email) {
 $this->emails[] = $email;
 }

 public function onTerminate() {
 foreach($this->emails as $email) {
 $this->emailGateway->sendEmail($email);
 }
 }

Updated implementation for sending emails during the terminate phase of Symfony kernel.

- Keep a list of all emails to send

- Send email adds email to send to the list

- On terminate listener (called with the terminate event) loops through emails and actually sends them.

@LAMPBRISTOL

EmailGateway terminate event implementation
class OnTerminateEmailGateway
 implements EmailGatewayInterface {

 private $emails = [];

 public function sendEmail(EmailMessage $email) {
 $this->emails[] = $email;
 }

 public function onTerminate() {
 foreach($this->emails as $email) {
 $this->emailGateway->sendEmail($email);
 }
 }

Updated implementation for sending emails during the terminate phase of Symfony kernel.

- Keep a list of all emails to send

- Send email adds email to send to the list

- On terminate listener (called with the terminate event) loops through emails and actually sends them.

