
CODE REVIEW AND
CONTINUOUS INTEGRATION

DAVE LIDDAMENT

MORAL OF THE STORY

▸ We all make mistakes.

▸ If the mistakes are spotted and rectified quickly the
consequences of the mistakes are minimal.

▸ We want to make mistakes easy to spot.

HOW CAN WE REDUCE THE COST
OF SOFTWARE DEVELOPMENT?

QUESTION

COST OF A BUG
Co

st

DESIGN WRITING 
 CODE

TEST RELEASE MAINTENANCE

FIND BUGS SOONER

WHY CODE REVIEW AND CONTINUOUS INTEGRATION

TYPES OF BUGS

▸ Code doesn’t work

▸ Code works but does the wrong thing

▸ Poor architecture / design

COST OF A BADLY WRITTEN CODE
Co

st

Time

COST TO DEVELOP SIMILAR SIZED FEATURE OVER TIME

WHY DO BUGS HAPPEN
Ra

te
 o

f i
nt

ro
du

ci
ng

 b
ug

s

Experience / Skill

SKILL AND EXPERIENCE VS BUGS

WHY THIS TALK

CODE REVIEW AND CI DONE WELL WILL REDUCE COST OF
SOFTWARE DEVELOPMENT

▸ Fewer bugs

▸ Cheaper bugs

▸ Write code quicker (by making code easier to read)

▸ Providing opportunities to quickly up skill team members

Pay attention!

@DaveLiddament

Dave Liddament @daveliddament

Lamp Bristol

15+ years software development (PHP, Java, Python, C)

Organise PHP-SW user group and Bristol PHP Training

AGENDA

▸ Why

▸ Code review

▸ CI - Continuous Integration

▸ Branching strategies

▸ Github / Bitbucket setup

▸ CircleCI example

▸ Wrap up

HOW

HOW ARE WE GOING TO REDUCE COSTS?

HOW

HOW ARE WE GOING TO REDUCE COSTS?

▸ Code Review

▸ github

▸ bitbucket

▸ gerrit

HOW

HOW ARE WE GOING TO REDUCE COSTS?

▸ Code Review

▸ github

▸ bitbucket

▸ gerrit

▸ Continuous Integration (CI)

▸ Jenkins

▸ CircleCI

▸ Travis CI

CODE REVIEW

QUESTIONS TO ASK IN CODE REVIEW

CODE REVIEW SHOULD FOCUS ON
THINGS THAT CAN NOT BE AUTOMATED

QUESTIONS TO ASK IN CODE REVIEW

DO THE TESTS TEST THE REQUIRED
FUNCTIONALITY?

QUESTIONS TO ASK IN CODE REVIEW

ARE THE TESTS ADEQUATE?

ARE THERE ENOUGH TESTS

IS THIS ENOUGH TESTING?

Scenario: Navigation at T junction in a cave
 Given: I am coming up to a T.
 When: Before I pass the T junction.
 Then: I should drop a cookie.

ARE THERE ENOUGH TESTS

HOW MANY TESTS DO WE NEED?

class Person
{

 /**
 * Returns true if the person is 18 or over
 */
 public function isAdult(): bool
 {

 .. some implementation ..
 }

}

ARE THERE ENOUGH TESTS

HOW MANY TESTS DO WE NEED (2)?

/**
 * @param int $id
 * @return bool
 * @throws NotFoundException
 */
public function isAllowed(int $id): bool
{
 .. some implementation ..
}

QUESTIONS TO ASK IN CODE REVIEW

WILL I UNDERSTAND THIS CODE IN 6
MONTHS TIME?

COST OF WRITING CODE CODE

“THE RATIO OF TIME SPENT READING VERSUS WRITING
IS WELL OVER 10 TO 1. WE ARE CONSTANTLY READING
OLD CODE AS PART OF THE EFFORT TO WRITE NEW
CODE. …
[THEREFORE,] MAKING IT EASY TO READ MAKES IT
EASIER TO WRITE.”

Robert C. Martin (Clean Code)

COST OF WRITING CODE CODE

HOW CAN WE REDUCE COST OF WRITING CODE

COST OF WRITING CODE

Reading Writing

HOW CAN WE REDUCE COST OF WRITING CODE

COST OF WRITING CODE

Reading Writing

HOW CAN WE REDUCE COST OF WRITING CODE

COST OF WRITING CODE

Reading Writing

HOW CAN WE REDUCE COST OF WRITING CODE

COST OF WRITING CODE

Reading Writing

Code review + refactor

WILL I UNDERSTAND THE CODE IN 6 MONTHS TIME?

WHAT DOES THIS CODE DO?

$userFields = [
 'Username',
 'Email',
 'FirstName',
 'LastName',
 'Phone',
];

foreach ($userFields as $key) {
 if ($userDetails->{'get'.$key}()) {
 $user->{'set'.$key}($userDetails->{'get'.$key}());
 }
}

WILL I UNDERSTAND THE CODE IN 6 MONTHS TIME?

WHAT DOES THIS CODE DO? (2)

if ($userDetails->getUsername()) {
 $user->setUsername($userDetails->getUsername());
}
if ($userDetails->getEmail()) {
 $user->setEmail($userDetails->getEmail());
}
if ($userDetails->getFirstName()) {
 $user->setFirstName($userDetails->getFirstName());
}
if ($userDetails->getLastName()) {
 $user->setLastName($userDetails->getLastName());
}
if ($userDetails->getPhone()) {
 $user->setPhone($userDetails->getPhone());
}

WILL I UNDERSTAND THE CODE IN 6 MONTHS TIME?

/**
 * Represents a location in the UK. (eg city, town, village)
 */
class Location
{

 … other methods …

 private $url;

 /**
 * @return string URL
 */
 public function getUrl(): string
 {

return $this->url;
 }

WILL I UNDERSTAND THE CODE IN 6 MONTHS TIME?

WHAT IS URL?
/**
 * Represents a location in the UK. (eg city, town, village)
 */
class Location
{

 … other methods …

 private $url;

 /**
 * @return string URL
 */
 public function getUrl(): string
 {

return $this->url;
 }

WILL I UNDERSTAND THE CODE IN 6 MONTHS TIME?

if ($agent->getType() === 1) {

 … do something …

}

WILL I UNDERSTAND THE CODE IN 6 MONTHS TIME?

WHAT DOES 1 MEAN?

if ($agent->getType() === 1) {

 … do something …

}

QUESTIONS TO ASK IN CODE REVIEW

ARE WE FOLLOWING PROJECT
CONVENTIONS?

ARE WE FOLLOWING PROJECT CONVENTIONS

interface LocationRepository
{

 public function findClosestTo($point);

 public function findByName($name);

 public function findBySlug($slug);

 public function searchForLocation($name, $type);

 public function findAllByType($type);

}

ARE WE FOLLOWING PROJECT CONVENTIONS

INCONSISTENT METHOD NAME
interface LocationRepository
{

 public function findClosestTo($point);

 public function findByName($name);

 public function findBySlug($slug);

 public function searchForLocation($name, $type);

 public function findAllByType($type);

}

QUESTIONS TO ASK IN CODE REVIEW

IS CODE AS OBVIOUS AND EXPLICIT AS IT
POSSIBLY CAN BE?

IS THE CODE AS OBVIOUS AND EXPLICIT AS IT POSSIBLY CAN BE

HOW DO WE MAKE THIS MORE OBVIOUS

class MarketingCampaign
{

 public function addAddress($address)
 {
 .. some implementation ..
 }

}

IS THE CODE AS OBVIOUS AND EXPLICIT AS IT POSSIBLY CAN BE

HOW DO WE MAKE THIS MORE OBVIOUS (2)

class MarketingCampaign
{

 public function addEmailAddress($emailAddress)
 {
 .. some implementation ..
 }

}

IS THE CODE AS OBVIOUS AND EXPLICIT AS IT POSSIBLY CAN BE

HOW DO WE MAKE THIS MORE OBVIOUS (3)

class MarketingCampaign
{

 /**
 * Adds email address, person will then be messaged
 * as part of the campaign.
 */
 public function addEmailAddress($emailAddress)
 {
 .. some implementation ..
 }

}

IS THE CODE AS OBVIOUS AND EXPLICIT AS IT POSSIBLY CAN BE

HOW DO WE MAKE THIS MORE OBVIOUS (4)

class MarketingCampaign
{
 /**
 * Add email address that should received campaign
 * messages.
 */
 public function addEmailAddress(string $emailAddress
): void {
 .. some implementation ..
 }

}

IS THE CODE AS OBVIOUS AND EXPLICIT AS IT POSSIBLY CAN BE

HOW DO WE MAKE THIS MORE OBVIOUS (5)

class MarketingCampaign
{
 /**
 * Add email address that should received campaign
 * messages.
 */
 public function addEmailAddress(
 EmailAddress $emailAddress
): void {
 .. some implementation ..
 }

}

QUESTIONS TO ASK IN CODE REVIEW

CAN I UNDERSTAND THE FUNCTIONALITY
OF THE CODE WITHOUT READING IT?

QUESTIONS TO ASK IN CODE REVIEW

HAS DEFENSIVE CODING BEEN USED?

HAS DEFENSIVE CODING BEEN USED

switch($status) {

 case ‘started’:
 … do something …
 break;

 case ‘finished’:
 … do something …
 break;

 case ‘quit’:
 … do something …
 break;
}

HAS DEFENSIVE CODING BEEN USED

MISSING DEFAULT
switch($status) {

 case ‘started’:
 … do something …
 break;

 case ‘finished’:
 … do something …
 break;

 case ‘quit’:
 … do something …
 break;
}

HAS DEFENSIVE CODING BEEN USED

/**
 * Set status (one of started|finished|quit)
 *
 * @param string $status
 */
public function setStatus(string $status): void
{
 $this->status = $status;
}

HAS DEFENSIVE CODING BEEN USED

MISSING CHECK THAT STATUS IS A VALID VALUE
/**
 * Set status (one of started|finished|quit)
 *
 * @param string $status
 */
public function setStatus(string $status): void
{
 $this->status = $status;
}

QUESTIONS TO ASK IN CODE REVIEW

HAS TECHNICAL DEBT BEEN
DOCUMENTED?

HAS TECHNICAL DEBT BEEN DOCUMENTED

ALL TODO COMMENTS MUST REFERENCE A TICKET

// TODO: Refactor to method https://trello.com/c/Aaa123

… some hacky code …

https://trello.com/c/Aaa123

QUESTIONS TO ASK IN CODE REVIEW

CAN ARCHITECTURE BE IMPROVED?
(E.G. SOLID)

BENEFITS OF
CODE REVIEW

CODE REVIEW BENEFITS

SOMEONE IS WATCHING YOU

CODE REVIEW BENEFITS

LEARNING AND UPSKILLING

BENEFITS OF CODE REVIEW

COST OF WRITING CODE

Reading Writing

BENEFITS OF CODE REVIEW

COST OF WRITING CODE

Reading Writing

Code review + refactor

BENEFITS OF CODE REVIEW
Co

st

Time

COST TO DEVELOP SIMILAR SIZED FEATURE OVER TIME

BENEFITS OF CODE REVIEW
Co

st

DESIGN WRITING 
 CODE

TEST RELEASE MAINTENANCE

FIND BUGS SOONER

BENEFITS OF CODE REVIEW

QUICK FEEDBACK LOOP

WHO SHOULD CONDUCT CODE REVIEWS

EVERYONE SHOULD CODE REVIEW

WHAT MAKES CODE
EASY TO REVIEW?

ASK PROGRAMMERS TO
REVIEW 10 LINES OF CODE
THEY’LL FIND 10 ISSUES…

Anyone who’s done code review

WHAT MAKES CODE EASY TO TO REVIEW

ASK THEM TO DO 500 LINES
THEY’LL SAY IT’S GOOD TO GO

Anyone who’s done code review

WHAT MAKES CODE EASY TO TO REVIEW

GOOD REVIEW
COMMENTS

GOOD REVIEW COMMENTS

DON’T BE A ****

GOOD REVIEW COMMENTS

NOT CRITICAL OF THE CODE AUTHOR

GOOD REVIEW COMMENTS

STATE PROBLEM AND
SUGGEST IMPROVEMENT

GOOD REVIEW COMMENTS

LINK TO STACK OVERFLOW, BLOG, ETC

GOOD REVIEW COMMENTS

USE: ‘LET’S CHAT’

GOOD REVIEW COMMENTS

USE ‘QUESTION:’

RECEIVING REVIEW
COMMENTS

RECEIVING REVIEW COMMENTS

DON’T BE A ****

CONTINUOUS
INTEGRATION

TASKS FOR CONTINUOUS INTEGRATION

RUNNING TESTS

TASKS FOR CONTINUOUS INTEGRATION

LINT (OR BETTER STILL PARALLEL LINT)

composer require —dev jakub-onderka/php-parallel-lint

vendor/bin/parallel-lint src

TASKS FOR CONTINUOUS INTEGRATION

CODE STYLE CHECKER
composer require —dev friendsofphp/php-cs-fixer

vendor/bin/php-cs-fixer fix —dry-run src

Or locally to fix problems

vendor/bin/php-cs-fixer fix src

TASKS FOR CONTINUOUS INTEGRATION

VAR DUMP CHECKER

composer require —dev jakub-onderka/php-var-dump-check

vendor/bin/php-var-dump-check —no-colors src

TASKS FOR CONTINUOUS INTEGRATION

SYMFONY

bin/console lint:twig app

bin/console lint:yaml app

TASKS FOR CONTINUOUS INTEGRATION

STATIC ANALYSIS TOOLS?

BENEFITS OF CONTINUOUS INTEGRATION

QUICK FEEDBACK LOOP

CODE REVIEW &
CONTINUOUS INTEGRATION
RECAP

BRANCHING
STRATEGIES

IDEAL PROCESS

ESSENTIAL - CODE CAN ONLY BE DEPLOYED IF:

▸CI passes

▸Code review passes

IDEAL PROCESS

IDEALLY - OTHERS ONLY DEVELOP WITH CODE THAT:

▸CI passes

▸Code review passes

PULL REQUESTS

PULL REQUEST METHOD

Master branch Feature branch

PULL REQUEST METHOD

Master branch Pull Request (PR) based on Feature branch

CI pass

Code review sign off

PULL REQUEST METHOD

Master branch

CI pass

Code review sign off

PULL REQUEST METHOD

Master branch

CI fails

OR

Code review not signed off

PULL REQUEST METHOD

Master branch

CI fails

OR

Code review not signed off

X X

PULL REQUEST METHOD

Master branch

PULL REQUEST METHOD

Master branch

PULL REQUEST METHOD

Master branch

PULL REQUEST METHOD

Master branch

PULL REQUEST METHOD

Master branch

X X

PULL REQUEST METHOD

Master branch

PULL REQUEST METHOD

Master branch

PULL REQUEST METHOD

Master branch

LET’S SET THIS UP

LET’S SET THIS UP
PS It’s really easy

THE PROCESS IS IMPORTANT
NOT THE TOOLS

GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

SETUP GITHUB

BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

SETUP BITBUCKET

CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

SETUP CIRCLE CI

CIRCLE CI V1 OR V2

CIRCLE.YML

SETUP CIRCLE.YML

CIRCLE BUILD STAGES

▸ machine

▸ dependencies

▸ database

▸ compile

▸ test

▸ deploy

SETUP CIRCLE.YML

STEPS WITHIN STAGE

▸ pre

▸ override

▸ post

SETUP CIRCLE.YML

MACHINE

machine:
 timezone: Europe/London
 php:
 version: 5.6.22
 environment:
 COMPOSER_CACHE_DIR: ~/.cache/composer

SETUP CIRCLE.YML

MACHINE

machine:
 timezone: Europe/London
 php:
 version: 5.6.22
 environment:
 COMPOSER_CACHE_DIR: ~/.cache/composer

SETUP CIRCLE.YML

MACHINE

machine:
 timezone: Europe/London
 php:
 version: 5.6.22
 environment:
 COMPOSER_CACHE_DIR: ~/.cache/composer

SETUP CIRCLE.YML

MACHINE

machine:
 timezone: Europe/London
 php:
 version: 5.6.22
 environment:
 COMPOSER_CACHE_DIR: ~/.cache/composer

SETUP CIRCLE.YML

DEPENDENCIES

dependencies:
 cache_directories:
 - "~/.cache/composer"
 pre:
 - echo "date.timezone = Europe/London" >> \
 /opt/circleci/php/$(phpenv global)/etc/php.ini

SETUP CIRCLE.YML

DEPENDENCIES

dependencies:
 cache_directories:
 - "~/.cache/composer"
 pre:
 - echo "date.timezone = Europe/London" >> \
 /opt/circleci/php/$(phpenv global)/etc/php.ini

SETUP CIRCLE.YML

DEPENDENCIES

dependencies:
 cache_directories:
 - "~/.cache/composer"
 pre:
 - echo "date.timezone = Europe/London" >> \
 /opt/circleci/php/$(phpenv global)/etc/php.ini

SETUP CIRCLE.YML

DEPENDENCIES

dependencies:
 cache_directories:
 - "~/.cache/composer"
 pre:
 - echo "date.timezone = Europe/London" >> \
 /opt/circleci/php/$(phpenv global)/etc/php.ini
 - cp app/config/parameters.yml.circle \
 app/config/parameters.yml

SETUP CIRCLE.YML

DATABASE

database:
 override:
 - mysql -u ubuntu -e "CREATE DATABASE testdb;"
 - createdb testdb2
 - psql -c "CREATE EXTENSION postgis;" testdb2
 - app/console doctrine:schema:create -—env=test

SETUP CIRCLE.YML

DATABASE

database:
 override:
 - mysql -u ubuntu -e "CREATE DATABASE testdb;"
 - createdb testdb2
 - psql -c "CREATE EXTENSION postgis;" testdb2
 - app/console doctrine:schema:create -—env=test

SETUP CIRCLE.YML

DATABASE

database:
 override:
 - mysql -u ubuntu -e "CREATE DATABASE testdb;"
 - createdb testdb2
 - psql -c "CREATE EXTENSION postgis;" testdb2
 - app/console doctrine:schema:create -—env=test

SETUP CIRCLE.YML

DATABASE

database:
 override:
 - mysql -u ubuntu -e "CREATE DATABASE testdb;"
 - createdb testdb2
 - psql -c "CREATE EXTENSION postgis;" testdb2
 - app/console doctrine:schema:create -—env=test

SETUP CIRCLE.YML

DATABASE

database:
 override:
 - mysql -u ubuntu -e "CREATE DATABASE testdb;"
 - createdb testdb2
 - psql -c "CREATE EXTENSION postgis;" testdb2
 - app/console doctrine:schema:create -—env=test

SETUP CIRCLE.YML

COMPILE

compile:
 override:
 - bin/parallel-lint src
 - app/console lint:twig app
 - app/console lint:yaml app
 - bin/var-dump-check --no-colors src
 - bin/php-cs-fixer fix --dry-run src

SETUP CIRCLE.YML

COMPILE

compile:
 override:
 - bin/parallel-lint src
 - app/console lint:twig app
 - app/console lint:yaml app
 - bin/var-dump-check --no-colors src
 - bin/php-cs-fixer fix --dry-run src

SETUP CIRCLE.YML

TEST

test:
 pre:
 - mkdir -p $CIRCLE_TEST_REPORTS/phpunit
 override:
 - bin/phpunit -c app/phpunit.xml.dist \
 -—log-junit $CIRCLE_TEST_REPORTS/phpunit/junit.xml \
 -d memory_limit=512M

SETUP CIRCLE.YML

TEST

test:
 pre:
 - mkdir -p $CIRCLE_TEST_REPORTS/phpunit
 override:
 - bin/phpunit -c app/phpunit.xml.dist \
 -—log-junit $CIRCLE_TEST_REPORTS/phpunit/junit.xml \
 -d memory_limit=512M

SETUP CIRCLE.YML

TEST

test:
 pre:
 - mkdir -p $CIRCLE_TEST_REPORTS/phpunit
 override:
 - bin/phpunit -c app/phpunit.xml.dist \
 -—log-junit $CIRCLE_TEST_REPORTS/phpunit/junit.xml \
 -d memory_limit=512M

SETUP CIRCLE.YML

TEST

test:
 pre:
 - mkdir -p $CIRCLE_TEST_REPORTS/phpunit
 override:
 - bin/phpunit -c app/phpunit.xml.dist \
 -—log-junit $CIRCLE_TEST_REPORTS/phpunit/junit.xml \
 -d memory_limit=512M

SETUP CIRCLE.YML

DEPLOY

deployment:
 live:
 branch: master
 commands:
 - ssh user@mywebsite.com \
 ”bash --login -c 'deploy "$CIRCLE_SHA1"'"

SETUP CIRCLE.YML

DEPLOY

deployment:
 live:
 branch: master
 commands:
 - ssh user@mywebsite.com \
 ”bash --login -c 'deploy "$CIRCLE_SHA1"'"

SETUP CIRCLE.YML

DEPLOY

deployment:
 live:
 branch: master
 commands:
 - ssh user@mywebsite.com \
 ”bash --login -c 'deploy "$CIRCLE_SHA1"'"

SETUP CIRCLE.YML

DEPLOY

deployment:
 live:
 branch: master
 commands:
 - ssh user@mywebsite.com \
 ”bash --login -c 'deploy "$CIRCLE_SHA1"'"

SETUP CIRCLE.YML

DEPLOY

deployment:
 live:
 branch: master
 commands:
 - ssh user@mywebsite.com \
 ”bash --login -c 'deploy "$CIRCLE_SHA1"'"

SETUP CIRCLE.YML

DEPLOY

deployment:
 live:
 branch: master
 commands:
 - ssh user@mywebsite.com \
 ”bash --login -c 'deploy "$CIRCLE_SHA1"'"

WHEN YOU TRY THIS AT HOME

TIPS

WHEN YOU TRY THIS AT HOME

TIPS

▸ https://github.com/DaveLiddament/circle_demo_project

▸ Branches called step-01, step-02, etc

https://github.com/DaveLiddament/circle_demo_project

WHEN YOU TRY THIS AT HOME

TIPS

▸ https://github.com/DaveLiddament/circle_demo_project

▸ Branches called step-01, step-02, etc

▸ Build things up in steps.

▸ Run only unit tests first

▸ Then get integration tests running

https://github.com/DaveLiddament/circle_demo_project

WHEN YOU TRY THIS AT HOME

TIPS

WHEN YOU TRY THIS AT HOME

TIPS

WRAP UP

SUMMARY

▸ Code review and CI done well reduce costs

▸ Fast feedback

▸ Fewer bugs

▸ Cleaner code (which means faster development)

▸ Quickly up skill new people to the project

▸ Tools today mean you can set up quickly

QUESTIONS

