AssertTrue(isDecoupled(“MyTests"))
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DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.
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TEST DOUBLES

» Dummy

» Stub

» Spy
» Mock

» Fake



TERMINOLOGY

TEST PYRAMID

Ul

Integration

Unit




AGENDA

» Why

» Terminology

» Do the right kind of tests at the right level
» Unit tests

» Building objects

» Tips

» Summary



DECOUPLING

DO THE RIGHT KIND OF TESTS AT THE RIGHT LEVEL

Ul

Integration

Unit
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ONE SMALL CHANGE TO IN THE USER INTERFACE
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DECOUPLING

SERVICE LAYER

interface PasswordService

{

/**

* Send user 1link to reset their password

*/
public function requestPasswordReset ($emailAddress): void;
/**

* Reset password from link

*/
public function resetPassword(Stoken, S$newPassword) : bool;
/**

* Normal password reset

*/

public function updatePassword(Suser, S$newPassword): bool;



DECOUPLING

EMAIL GATEWAY

interface EmailGateway

{
/**

* Send an email to a user
*/
public function sendEmail (
Sto,
Sfrom.
Ssubject,
Smessage
) : void;
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COUPLED TEST

» Go to web home page

» Login as user Bob

» Enter “Clean Code” into search box
» Iterate through results to find book
» Click add to basket

» Click checkout

» Enter payment details

» Click confirm

» Enter delivery address

» Click confirm

» Enter next day delivery option

» Check price includes additional delivery charge
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DECOUPLED TEST

» Given | have a shopping basket containing “Clean Code”

(NOTE: this book costs £10)
» When | check out with “Free delivery”

» Then | should be charged £10



DECOUPLING

DECOUPLED TEST (2)

» Given | have a shopping basket containing “Clean Code”
(NOTE: this book costs £10)

» When | check out with "Next day delivery”
(NOTE: this costs £5)

» Then | should be charged £15
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DECOUPLING

ADD TO BASKET (AT Ul LAYER)

function addToBasket(string $productName) : Basket
{

. Lots of complicated, fragile code ..



function addToBasket(string $productName) : Basket
{

$productService = $container->productService() ;
Sproduct = $productService->lookup ($productName) ;

SbasketService = Scontainer->basketService () ;
Sbasket = SbasketService->newBasket|() ;

Sbasket->addProduct (Sproduct) ;

return Sbasket;

}
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DO THE RIGHT KIND OF TESTS AT THE RIGHT LEVEL

Have we wired up

Ul correctly?
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TAKE AWAY

TAKE AWAY

» Do the right kind of tests at the right levels:
» Business logic tested at the service layer
» Test Ul to make sure it's wired to business logic correctly

» Architect your code well



DECOUPLED TESTS REDUCE THE
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UNIT TESTS

UNIT TEST EXAMPLE - SOFTWARE UNDER TEST

class PasswordValidator

{

/**

* Returns true 1f password meets followling criteria:
*

* — 8 or more characters

* — at least 1 digit

* — at least 1 upper case letter

*

- at least 1 lower case letter
*/

public function isValid(string $password) : bool
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UNIT TESTS

UNIT TEST EXAMPLE - TEST CASES REQUIRED

» Valid passwords:
» “PasswOrd”

» Invalid passwords:
» "PasswOr" - too short (everything else is good)
» "Password” - no digit

» “passwOrd” - no upper case letters

» "PASSWORD" - no lower case letters



UNIT TESTS

NEW REQUIREMENT

class PasswordValidator

{

*

Returns true 1f password meets followlng criteria:

- 8 or more characters

at least 1 digit

— at least 1 upper case letter

— at least 1 lower case letter

- not one of the user’s previous 5 passwords

. . . . D S . o
I

~

public function isValid(string $password, User Suser) : bool
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UNIT TESTS

PREVIOUS PASSWORD CHECKER INTERFACE

interface PreviousPasswordChecker

{

/**
* Returns true 1f password has been used by user
* 1n previous 5 passwords
*/
public function isPreviouslyUsed (
string $password,
User Suser

) : bool;
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» Update existing tests to account for:

» Any calls to RecentPasswordChecker



UNIT TESTS

PASSWORD VALIDATOR TEST REVISITED

» Update existing tests to account for:
» Any calls to RecentPasswordChecker
» New tests
» Valid password. Has been recently used

» Valid password. Has NOT been recently used
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Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.
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NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(“PasswOrd”, $user)
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UNIT TESTS

NEW TEST: VALID PASSWORD, BUT RECENTLY USED

TEST

Expect: Exactly 1 call to isPreviouslyUsed with parameters “PasswOrd” and $user. Return true.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(”PasswOrd”, $user)

PASSWORD
VALIDATOR

false true

>

Were expectations met?

MOCK
RECENT
PASSWORD
CHECKER




UNIT TESTS

EXISTING CODE

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool

{

if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

}

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;

. remaining checks ..

return true;



UNIT TESTS

EXISTING TESTS

TEST

Expect: Exactly 1 call to isPreviouslyUsed with parameters “<password>" and $user. Return false.

isValid(“<password>", $user)

>

true/false

PASSWORD
VALIDATOR

isPreviouslyUsed("<password>", $user)

false

>

Were expectations met?
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RECENT
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CHECKER




UNIT TESTS

EXISTING CODE

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool
{
if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

}

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;
. remaining checks ..

return true;



UNIT TESTS

EXISTING CODE (REFACTORED)

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool

{

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;

if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

. remaining checks ..

return true;
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EXISTING TESTS: AFTER REFACTOR

TEST

Expect: Exactly 1 call to isPreviouslyUsed with parameters “<password>" and $user. Return false.

isValid(“<password>", $user)

>

PASSWORD
VALIDATOR

false

isPreviouslyUsed(”<password>", $user)

>

false

Were expectations met?

MOCK
RECENT
PASSWORD
CHECKER




UNIT TESTS

EXISTING CODE (REFACTORED)

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool

{

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;

if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

. remaining checks ..

return true;
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USE A STUB

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(?, ?)
PASSWORD > STUB
RECENT

TEST VALIDATOR

true

olse PASSWORD
CHECKER




UNIT TESTS

USE A STUB

isValid(“PasswOrd"”, $user)

>

PASSWORD

VALIDATOR

true




TAKE AWAY

USE STUBS UNLESS YOU REALLY NEED MOCKS

» Mocks increase coupling between tests and code
» Only use them when you really need to
» Test harder to write

» Reduces ability to refactor
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Suser = $this->userService->registerUser (
“‘anna@acme.com”,
“Anna”
4

“PasswOrd”) ;
SuserService->completeRegistration (

Suser->getConfirmationToken) ;



BUILDING TEST OBJECTS

HAND BUILDING

Suser = Sthis->userService->registerUser (
“anna@acme.com”,

Ann
Pass

44

rd// )
SuserService- tion (
Suser->getConfirmationToken) ;
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0BJECT MOTHER

Suser = Sthis->userObjectMother->getAnna() ;

// User will have default values for name,
// email, etc



BUILDING TEST OBJECTS

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother {

public function getAnna(): User {

Suser = $userService->registerUser (
“‘anna@acme.com”,
“Anna”
’
“PasswOrd”) ;

return Suser;



BUILDING TEST OBJECTS

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother ({

public function getAnna () : User ({

Suser = SuserService->registerUser (
“anna@acme.com”,
“Anna”
4
“PasswOrd”) ;

SuserService->confirmRegistration (
Suser, Suser->getToken());

return Suser;



BUILDING TEST OBJECTS

TEST BUILDER: 1

SuserBuilder = $this->getUserBuilder () ;
Suser = SuserBuilder->build|() ;

// User will have default wvalues for
// name, email, etc



SuserBuilder = $this->getUserBuilder () ;
Suser = SuserBuilder
->name (“Annabelle”)
->password (“Passwd4rd”)
->previousPasswords ([
“Passwlrd”,
“Passwl2rd”,
“Passw3rd”,

1)
->build () ;



BUILDING TEST OBJECTS

DEFER TO OTHER OBJECT MOTHERS / BUILDERS

class ProductObjectMother

{
public function getCleanCodeBook () : Product ({

Sproduct = .. create Product ..

return Sproduct;



BUILDING TEST OBJECTS

DEFER TO OTHER OBJECT MOTHERS / BUILDERS

class ProductObjectMother

{
public function getCleanCodeBook () : Product ({

Ssupplier = Sthis->supplierObjectMother
->getIPadsForUs() ;

Sproduct = .. create Product ..
Sproduct->setSupplier (Ssupplier) ;

return Sproduct;
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BUILDING TEST OBJECTS

SEEDING A DATABASE

users:
- name: Anna
emalil: annalacme.com
password: Passwlrd

- name: Bob
email: boblexample.com
password: Passwbrd



BUILDING TEST OBJECTS

SEEDING A DATABASE
users:
- name: Anna

email: dacme.com
password X Passwlrd

- name: Bob
email: boblexample.com
password: Passwbrd
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TEST DOUBLE

TEST ENTRY -
POINT BUSINESS LOGIC

TEST DOUBLE
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BUILDING TEST OBJECTS

HOW DO WE BUILD THE TEST USER OBJECT?

» Hand build what is required
» Seed the database
» Object mother

» Test Builder
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OBJECT MOTHER AND TEST BUILDER BENEFITS
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TAKE AWAY

OBJECT MOTHER AND TEST BUILDER BENEFITS

» Single place where test business object built
» Easy to find
» Easy to update

» Defer to other Object Mothers / Test Builders

» Decoupling our tests from the software under test
» More robust to change

» Easier to refactor



DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.



SUMMARY



SUMMARY

» Decoupling is good



SUMMARY

» Decoupling is good

» Reduces development and maintenance costs



SUMMARY

» Decoupling is good
» Reduces development and maintenance costs

» Do the right kind of tests at the right level



SUMMARY

» Decoupling is good
» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Test business logic at the service layer



SUMMARY

» Decoupling is good

» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Test business logic at the service layer

» Test Ul is correctly wired up to service layer



SUMMARY

» Decoupling is good

» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Test business logic at the service layer

» Test Ul is correctly wired up to service layer

» Prefer stubs to mocks (unless you really need them)



SUMMARY

» Decoupling is good
» Reduces development and maintenance costs
» Do the right kind of tests at the right level
» Test business logic at the service layer
» Test Ul is correctly wired up to service layer
» Prefer stubs to mocks (unless you really need them)

» Building objects using Object Mother / Builder patterns
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