AssertTrue(isDecoupled(“MyTests"))

Dave Liddament

Time: 1.99 seconds, Memory: 24.75MB

NN N NN

444
444
444
444
444
444
444

e e e e e e

Time: 1.55 seconds, Memory: 24.75MB

NNN NN

444
444
444
444
444
444
444

AN AN AN AN AN N N

Time: 1.55 seconds, Memory: 24.75MB

There were lots of failures:

NNN NN

444
444
444
444
444
444
444

AN AN AN AN AN N N

Time: 1.55 seconds, Memory: 24.75MB

There were lots of failures:

NNN NN

444
444
444
444
444
444
444

AN AN AN AN AN N N

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

~

Organise PHP-SW and Bristol PHP Training

AGENDA

AGENDA

» Why

AGENDA

» Why

» Terminology

AGENDA

» Why
» Terminology

» Do the right kind of tests at the right level

AGENDA

» Why
» Terminology
» Do the right kind of tests at the right level

» Unit tests

AGENDA

» Why

» Terminology

» Do the right kind of tests at the right level
» Unit tests

» Building objects

AGENDA

» Why

» Terminology

» Do the right kind of tests at the right level
» Unit tests

» Building objects

» Tips

AGENDA

» Why

» Terminology

» Do the right kind of tests at the right level
» Unit tests

» Building objects

» Tips

» Summary

TERMINOLOGY

COUPLING

TERMINOLOGY

COUPLING

TERMINOLOGY

COUPLING

TERMINOLOGY

TEST DOUBLES

TERMINOLOGY

TEST DOUBLES

TERMINOLOGY

TEST DOUBLES

TERMINOLOGY

TEST DOUBLES

TERMINOLOGY

TEST DOUBLES

» Dummy

TERMINOLOGY

TEST DOUBLES

» Dummy

» Stub

TERMINOLOGY

TEST DOUBLES

» Dummy

» Stub

» Spy

TERMINOLOGY

TEST DOUBLES

» Dummy

» Stub

» Spy
» Mock

TERMINOLOGY

TEST DOUBLES

» Dummy

» Stub

» Spy
» Mock

» Fake

TERMINOLOGY

TEST PYRAMID

Ul

Integration

Unit

AGENDA

» Why

» Terminology

» Do the right kind of tests at the right level
» Unit tests

» Building objects

» Tips

» Summary

DECOUPLING

DO THE RIGHT KIND OF TESTS AT THE RIGHT LEVEL

Ul

Integration

Unit

DECOUPLING

/$\

>

%/

AWARD WINNING SOFTWARE

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

ONE SMALL CHANGE TO IN THE USER INTERFACE

DECOUPLING

FRAMEWORK

CONTROLLER BUSINESS LOGIC

DECOUPLING

SERVICE LAYER

interface PasswordService

{

/**

* Send user 1link to reset their password

*/
public function requestPasswordReset ($emailAddress): void;
/**

* Reset password from link

*/
public function resetPassword(Stoken, S$newPassword) : bool;
/**

* Normal password reset

*/

public function updatePassword(Suser, S$newPassword): bool;

DECOUPLING

EMAIL GATEWAY

interface EmailGateway

{
/**

* Send an email to a user
*/
public function sendEmail (
Sto,
Sfrom.
Ssubject,
Smessage
) : void;

ARCHITECTURE

PAYMENT
GATEWAY

Q B SE s BUSINESS LOGIC

EMAIL
GATEWAY

%

ARCHITECTURE

BUSINESS LOGIC

ARCHITECTURE

TEST DOUBLE

TEST ENTRY

TEST DOUBLE

POINT BUSINESS LOGIC

DECOUPLING

|

PAYMENT
GATEWAY
TEST ENTRY
S —— CONTROLLER BUSINESS LOGIC
EMAIL
GATEWAY

%

DECOUPLING

TAKE AWAY

Business Logic

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

DECOUPLING

COUPLED TEST

» Go to web home page

» Login as user Bob

» Enter “Clean Code” into search box
» Iterate through results to find book
» Click add to basket

» Click checkout

» Enter payment details

» Click confirm

» Enter delivery address

» Click confirm

» Enter next day delivery option

» Check price includes additional delivery charge

DECOUPLING

DECOUPLED TEST

» Given | have a shopping basket containing “Clean Code”

(NOTE: this book costs £10)
» When | check out with “Free delivery”

» Then | should be charged £10

DECOUPLING

DECOUPLED TEST (2)

» Given | have a shopping basket containing “Clean Code”
(NOTE: this book costs £10)

» When | check out with "Next day delivery”
(NOTE: this costs £5)

» Then | should be charged £15

DECOUPLING

DECOUPLING

ADD TO BASKET

DECOUPLING

ADD TO BASKET

CHECKOUT

DECOUPLING

ADD TO BASKET

CHECKOUT

CHECK PRICE

DECOUPLING

ADD TO BASKET (V1)

DECOUPLING

ADD TO BASKET (V1)

DECOUPLING

ADD TO BASKET (V2)

DECOUPLING

ADD TO BASKET

N\

DECOUPLING

DDDDDDDDDD

SOFTWARE

DDDDDDDDDD

SOFTWARE

DECOUPLING

m BUSINESS LOGIC

DECOUPLING

TEST DOUBLE

TEST ENTRY

TEST DOUBLE

POINT BUSINESS LOGIC

DECOUPLING

ADD TO BASKET
(Ul)

DECOUPLING

ADD TO BASKET
(Ul)

\ ADD TO BASKET

(SERVICE LAYER)

DECOUPLING

ADD TO BASKET (AT Ul LAYER)

function addToBasket(string $productName) : Basket
{

. Lots of complicated, fragile code ..

function addToBasket(string $productName) : Basket
{

$productService = $container->productService() ;
Sproduct = $productService->lookup ($productName) ;

SbasketService = Scontainer->basketService () ;
Sbasket = SbasketService->newBasket|() ;

Sbasket->addProduct (Sproduct) ;

return Sbasket;

}

DECOUPLING

DO THE RIGHT KIND OF TESTS AT THE RIGHT LEVEL

Business logic

DECOUPLING

DO THE RIGHT KIND OF TESTS AT THE RIGHT LEVEL

Have we wired up

Ul correctly?

TAKE AWAY

TAKE AWAY

TAKE AWAY

TAKE AWAY

» Do the right kind of tests at the right levels:
» Business logic tested at the service layer

» Test Ul to make sure it's wired to business logic correctly

TAKE AWAY

TAKE AWAY

» Do the right kind of tests at the right levels:
» Business logic tested at the service layer
» Test Ul to make sure it's wired to business logic correctly

» Architect your code well

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

AGENDA

» Why

» Terminology

» Do the right kind of tests at the right level
» Unit tests

» Building objects

» Tips

» Summary

UNIT TESTS

UNIT TESTS

Unit

UNIT TESTS

UNIT TEST EXAMPLE - SOFTWARE UNDER TEST

class PasswordValidator

{

/**

* Returns true 1f password meets followling criteria:
*

* — 8 or more characters

* — at least 1 digit

* — at least 1 upper case letter

*

- at least 1 lower case letter
*/

public function isValid(string $password) : bool

UNIT TESTS

UNIT TEST EXAMPLE - TEST CASES REQUIRED

UNIT TESTS

UNIT TEST EXAMPLE - TEST CASES REQUIRED

» Valid passwords:

» "PasswOrd”

UNIT TESTS

UNIT TEST EXAMPLE - TEST CASES REQUIRED

» Valid passwords:
» “PasswOrd”

» Invalid passwords:
» "PasswOr" - too short (everything else is good)
» "Password” - no digit

» “passwOrd” - no upper case letters

» "PASSWORD" - no lower case letters

UNIT TESTS

NEW REQUIREMENT

class PasswordValidator

{

*

Returns true 1f password meets followlng criteria:

- 8 or more characters

at least 1 digit

— at least 1 upper case letter

— at least 1 lower case letter

- not one of the user’s previous 5 passwords

. . . . D S . o
I

~

public function isValid(string $password, User Suser) : bool

UNIT TESTS

EXISTING
PASSWORD

VALIDATION
RULES

UNIT TESTS

EXISTING
PASSWORD

VALIDATION
RULES

CHECK IF LAST 5
PASSWORDS

UNIT TESTS

EXISTING
PASSWORD

VALIDATION
RULES

CHECK IF LAST
PASSWORDS

UNIT TESTS

EXISTING
PASSWORD

INTERFACE

VALIDATION
RULES

CHECK IF LAST
PASSWORDS

UNIT TESTS

EXISTING
PASSWORD

INTERFACE

VALIDATION
RULES

CHECK IF LAST
PASSWORDS

UNIT TESTS

EXISTING
PASSWORD

VALIDATION
RULES

CHECK IF LAST
PASSWORDS

UNIT TESTS

ALTERNATIVE
IMPLEMENTATION

EXISTING
PASSWORD

INTERFACE

VALIDATION
RULES

UNIT TESTS

PREVIOUS PASSWORD CHECKER INTERFACE

interface PreviousPasswordChecker

{

/**
* Returns true 1f password has been used by user
* 1n previous 5 passwords
*/
public function isPreviouslyUsed (
string $password,
User Suser

) : bool;

UNIT TESTS

PASSWORD VALIDATOR TEST REVISITED

UNIT TESTS

PASSWORD VALIDATOR TEST REVISITED

» Update existing tests to account for:

» Any calls to RecentPasswordChecker

UNIT TESTS

PASSWORD VALIDATOR TEST REVISITED

» Update existing tests to account for:
» Any calls to RecentPasswordChecker
» New tests
» Valid password. Has been recently used

» Valid password. Has NOT been recently used

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

MOCK
TEST RECENT

PASSWORD
CHECKER

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

isValid(“PasswOrd"”, $user)

>

PASSWORD

MOCK

TEST VALIDATOR RECENT

PASSWORD
CHECKER

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(“PasswOrd”, $user)

PASSWORD @ MOCK
TEST VALIDATOR RECENT

PASSWORD
CHECKER

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(“PasswOrd”, $user)

PASSWORD @ MOCK
TEST VALIDATOR RECENT
false PASSWORD

< CHECKER

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(“PasswOrd”, $user)

PASSWORD @ MOCK
TEST VALIDATOR RECENT
false PASSWORD

true

< CHECKER

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(“PasswOrd”, $user)

PASSWORD @ MOCK
TEST VALIDATOR RECENT
false PASSWORD

true

< CHECKER

Were expectations met?

UNIT TESTS

NEW TEST: VALID PASSWORD, NOT RECENTLY USED

Expect: Exactly 1 call to isPreviouslyUsed with parameters “Passw0Ord"” and $user. Return false.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(“PasswOrd”, $user)

PASSWORD @ MOCK
TEST VALIDATOR RECENT
false PASSWORD

true

< CHECKER

Were expectations met?

UNIT TESTS

NEW TEST: VALID PASSWORD, BUT RECENTLY USED

TEST

Expect: Exactly 1 call to isPreviouslyUsed with parameters “PasswOrd” and $user. Return true.

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(”PasswOrd”, $user)

PASSWORD
VALIDATOR

false true

>

Were expectations met?

MOCK
RECENT
PASSWORD
CHECKER

UNIT TESTS

EXISTING CODE

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool

{

if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

}

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;

. remaining checks ..

return true;

UNIT TESTS

EXISTING TESTS

TEST

Expect: Exactly 1 call to isPreviouslyUsed with parameters “<password>" and $user. Return false.

isValid(“<password>", $user)

>

true/false

PASSWORD
VALIDATOR

isPreviouslyUsed("<password>", $user)

false

>

Were expectations met?

MOCK
RECENT
PASSWORD
CHECKER

UNIT TESTS

EXISTING CODE

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool
{
if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

}

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;
. remaining checks ..

return true;

UNIT TESTS

EXISTING CODE (REFACTORED)

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool

{

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;

if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

. remaining checks ..

return true;

UNIT TESTS

EXISTING TESTS: AFTER REFACTOR

TEST

Expect: Exactly 1 call to isPreviouslyUsed with parameters “<password>" and $user. Return false.

isValid(“<password>", $user)

>

PASSWORD
VALIDATOR

false

isPreviouslyUsed(”<password>", $user)

>

false

Were expectations met?

MOCK
RECENT
PASSWORD
CHECKER

UNIT TESTS

EXISTING CODE (REFACTORED)

class PasswordValidator

{

public function isValid(string S$password, User Suser) : bool

{

if (.. password too short ..) return false;
if (.. password has no digit ..) return false;

if (Sthis->recentPasswordChecker->isRecentPassword (
Spassword, Suser)) {
return false;

. remaining checks ..

return true;

UNIT TESTS

UNIT TESTS

UNIT TESTS

USE A STUB

isValid(“PasswOrd"”, $user)

>

PASSWORD

VALIDATOR

true

UNIT TESTS

USE A STUB

isValid(“PasswOrd"”, $user)

>

isPreviouslyUsed(?, ?)
PASSWORD > STUB
RECENT

TEST VALIDATOR

true

olse PASSWORD
CHECKER

UNIT TESTS

USE A STUB

isValid(“PasswOrd"”, $user)

>

PASSWORD

VALIDATOR

true

TAKE AWAY

USE STUBS UNLESS YOU REALLY NEED MOCKS

» Mocks increase coupling between tests and code
» Only use them when you really need to
» Test harder to write

» Reduces ability to refactor

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

AGENDA

» Why

» Terminology

» Do the right kind of tests at the right level
» Unit tests

» Building objects

» Tips

» Summary

DECOUPLING

BUILDING DATA FIXTURES

BUILDING TEST OBJECTS

HAND BUILDING

Suser = $this->userService->registerUser (
“‘anna@acme.com”,
“Anna”
4
“PasswOrd”) ;

BUILDING TEST OBJECTS

HAND BUILDING

Suser = $this->userService->registerUser (
“‘anna@acme.com”,
“Anna”
4

“PasswOrd”) ;
SuserService->completeRegistration (

Suser->getConfirmationToken) ;

BUILDING TEST OBJECTS

HAND BUILDING

Suser = Sthis->userService->registerUser (
“anna@acme.com”,

Ann
Pass

44

rd//)
SuserService- tion (
Suser->getConfirmationToken) ;

BUILDING TEST OBJECTS

0BJECT MOTHER

Suser = Sthis->userObjectMother->getAnna() ;

// User will have default values for name,
// email, etc

BUILDING TEST OBJECTS

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother {

public function getAnna(): User {

Suser = $userService->registerUser (
“‘anna@acme.com”,
“Anna”
’
“PasswOrd”) ;

return Suser;

BUILDING TEST OBJECTS

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother ({

public function getAnna () : User ({

Suser = SuserService->registerUser (
“anna@acme.com”,
“Anna”
4
“PasswOrd”) ;

SuserService->confirmRegistration (
Suser, Suser->getToken());

return Suser;

BUILDING TEST OBJECTS

TEST BUILDER: 1

SuserBuilder = $this->getUserBuilder () ;
Suser = SuserBuilder->build|() ;

// User will have default wvalues for
// name, email, etc

SuserBuilder = $this->getUserBuilder () ;
Suser = SuserBuilder
->name (“Annabelle”)
->password (“Passwd4rd”)
->previousPasswords ([
“Passwlrd”,
“Passwl2rd”,
“Passw3rd”,

1)
->build () ;

BUILDING TEST OBJECTS

DEFER TO OTHER OBJECT MOTHERS / BUILDERS

class ProductObjectMother

{
public function getCleanCodeBook () : Product ({

Sproduct = .. create Product ..

return Sproduct;

BUILDING TEST OBJECTS

DEFER TO OTHER OBJECT MOTHERS / BUILDERS

class ProductObjectMother

{
public function getCleanCodeBook () : Product ({

Ssupplier = Sthis->supplierObjectMother
->getIPadsForUs() ;

Sproduct = .. create Product ..
Sproduct->setSupplier (Ssupplier) ;

return Sproduct;

BUILDING TEST OBJECTS

BUILDING TEST OBJECTS

SEEDING A DATABASE

users:
- name: Anna
emalil: annalacme.com
password: Passwlrd

- name: Bob
email: boblexample.com
password: Passwbrd

BUILDING TEST OBJECTS

SEEDING A DATABASE
users:
- name: Anna

email: dacme.com
password X Passwlrd

- name: Bob
email: boblexample.com
password: Passwbrd

BUILDING TEST OBJECTS

TEST DOUBLE

TEST ENTRY -
POINT BUSINESS LOGIC

TEST DOUBLE

BUILDING TEST OBJECTS

TEST DOUBLE

TEST ENTRY -
POINT BUSINESS LOGIC

TEST DOUBLE

BUILDING TEST OBJECTS

HYBRID

BUILDING TEST OBJECTS

HOW DO WE BUILD THE TEST USER OBJECT?

» Hand build what is required
» Seed the database
» Object mother

» Test Builder

TAKE AWAY

OBJECT MOTHER AND TEST BUILDER BENEFITS

TAKE AWAY

OBJECT MOTHER AND TEST BUILDER BENEFITS

» Single place where test business object built
» Easy to find

» Easy to update

TAKE AWAY

OBJECT MOTHER AND TEST BUILDER BENEFITS

» Single place where test business object built
» Easy to find
» Easy to update

» Defer to other Object Mothers / Test Builders

TAKE AWAY

OBJECT MOTHER AND TEST BUILDER BENEFITS

» Single place where test business object built
» Easy to find
» Easy to update

» Defer to other Object Mothers / Test Builders

» Decoupling our tests from the software under test
» More robust to change

» Easier to refactor

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

SUMMARY

SUMMARY

» Decoupling is good

SUMMARY

» Decoupling is good

» Reduces development and maintenance costs

SUMMARY

» Decoupling is good
» Reduces development and maintenance costs

» Do the right kind of tests at the right level

SUMMARY

» Decoupling is good
» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Test business logic at the service layer

SUMMARY

» Decoupling is good

» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Test business logic at the service layer

» Test Ul is correctly wired up to service layer

SUMMARY

» Decoupling is good

» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Test business logic at the service layer

» Test Ul is correctly wired up to service layer

» Prefer stubs to mocks (unless you really need them)

SUMMARY

» Decoupling is good
» Reduces development and maintenance costs
» Do the right kind of tests at the right level
» Test business logic at the service layer
» Test Ul is correctly wired up to service layer
» Prefer stubs to mocks (unless you really need them)

» Building objects using Object Mother / Builder patterns

! Feedback

IMAGE CREDITS

Decouple © Can Stock Photo / iqoncept

» Story © Can Stock Photo / Palto

> Man On Moon: © Can Stock Photo / openlens

> Confession © Can Stock Photo / lenm

> Pyramid © Can Stock Photo / Arcady

> Feedback © Can Stock Photo / kikkerdirk

> Scripts © Can Stock Photo / LoopAll

> Tools © Can Stock Photo / dedMazay

» Builder © Can Stock Photo / aleksangel

> Database © Can Stock Photo / dvarg

> Fake © Can Stock Photo / carmendorin

People chatting © Can Stock Photo / studioworkstock
» Seeding: © Can Stock Photo / italianestro

» Banking app © Can Stock Photo / tashka2000

> Old Telephone © Can Stock Photo / barneyboogles
» Bank © Can Stock Photo / dolgachov

> Coupler © Can Stock Photo / Artimages

> Bank Building © Can Stock Photo / dvarg

> Online Shopping © Can Stock Photo / Wetzkaz

