
AssertTrue(isDecoupled(“MyTests”))

Dave Liddament
@daveliddament

phpDay 2019

WHY

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

WHY

VALUE OF TESTS =
 COST OF BUGS FOUND BY TESTS
 - COST OF TEST SUITE

@daveliddament

IS THIS TALK FOR YOU?

@daveliddament

IS THIS TALK FOR YOU?

YES

▸ Some automated testing.

▸ You want high level
concepts you can apply
when testing applications
via the UI or at integration
level.

@daveliddament

IS THIS TALK FOR YOU?

YES

▸ Some automated testing.

▸ You want high level
concepts you can apply
when testing applications
via the UI or at integration
level.

▸ Experienced tester.

▸ You already write unit,
integrations and end to
end tests.

▸ You don’t abstract talks.

NO

@daveliddament

@daveliddament

AGENDA

@daveliddament

AGENDA

▸ Terminology

@daveliddament

TERMINOLOGY

COUPLING

A B

@daveliddament

TERMINOLOGY

COUPLING

A B

@daveliddament

TERMINOLOGY

COUPLING

A B

@daveliddament

TERMINOLOGY

TEST DOUBLES

A

@daveliddament

TERMINOLOGY

TEST DOUBLES

A B

@daveliddament

TERMINOLOGY

TEST DOUBLES

A B

@daveliddament

TERMINOLOGY

TEST PYRAMID

UI

Integration

Unit

@daveliddament

#1
@daveliddament

STORY 1

TYPICAL USER JOURNEY

▸ Bob would log in

▸ Bob see a list of quizzes

▸ Pick one he hadn’t done

▸ Complete the quiz

▸ See his score

▸ His team’s score would be updated

@daveliddament

STORY 1

UI

@daveliddament

STORY 1

INITIALLY TESTS WOULD DO THIS KIND OF THING…

▸ Visit home page

▸ Find login link.

▸ Click login link

▸ Find form element with name “username”

▸ Enter username

▸ Find form element with name “password”

▸ Enter password

▸ Find button with type “submit”

▸ Click button

▸ … etc …

@daveliddament

STORY 1

A TINY CHANGE REQUEST….

Can we change the layout of the page
showing the lists of quizzes?

@daveliddament

... 63 / 444 (14%)

... 126 / 444 (28%)

... 189 / 444 (42%)

... 252 / 444 (56%)

... 315 / 444 (70%)

... 378 / 444 (85%)

... 441 / 444 (99%)

...

Time: 1.99 seconds, Memory: 24.75MB

OK (444 tests, 1201 assertions)

@daveliddament

................FF. 63 / 444 (14%)

... 126 / 444 (28%)

.........................FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...... 189 / 444 (42%)
FFFFFFFFFFFF... 252 / 444 (56%)
...................FF....FFFF.......FFFFFFFFFFFFFF............. 315 / 444 (70%)
..................................FFFFFFFFFFFFFFFFFFFFFFFFFFF.. 378 / 444 (85%)
FFFFFFFFFFFFFF........FFF 441 / 444 (99%)
...

Time: 20 minutes 54 seconds, Memory: 24.75MB

There were lots of failures: 😞

@daveliddament

@daveliddament

STORY 1

UI

@daveliddament

STORY 1

PROBLEM: TIGHT COUPLING

SOFTWARE
UNDER TEST

TEST

@daveliddament

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST PAGE
OBJECT

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST PAGE
OBJECT

login ($username, $password)

answerQuestion ($answer)

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST PAGE
OBJECT

login ($username, $password)

answerQuestion ($answer)

findElementByName ($name)

click ()

STORY 1

A PAGE OBJECT CAN…

▸ Simulate an action a human would do.

▸ Grab data from the page.

▸ Navigate to another page.

@daveliddament

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST PAGE
OBJECT

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST PAGE
OBJECT

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST PAGE
OBJECT

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

TEST PAGE
OBJECT

login ($username, $password)

answerQuestion ($answer)

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TEST

PAGE
OBJECT

TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

SOFTWARE
UNDER TESTTESTS

PAGE
OBJECT

STORY 1

TEST LOOK A BIT MORE LIKE THIS
$loginPage = $homePage->getLoginPage();

$myQuizzesPage = $loginPage->login(“bob”, “password”);

$quiz1Page = $myQuizesPage->findQuiz(1);

$quiz1Page->setAnswer1(‘a’);

$quiz1Page->setAnswer2(‘b’);

$resultsPage = $quiz1Page->submitAnswers();

assertEquals(3, $resultsPage->getScore());

… etc …
@daveliddament

STORY 1

THINGS I WANTED TO TEST…

Does an individual’s score get
correctly allocated to their team?

@daveliddament

STORY 1

A TINY CHANGE REQUEST….

Could we change the page a user
goes to after logging in?

@daveliddament

STORY 1

THE TESTS WILL BREAK
$loginPage = $homePageObject->getLoginPageObject();

$myQuizzesPage = $loginPage->login(“bob”, “password”);

$quiz1Page = $myQuizesPage->findQuiz(1);

$quiz1Page->setAnswer1(‘a’);

$quiz1Page->setAnswer2(‘b’);

$resultsPage = $quiz1Page->submitAnswers();

assertEquals(3, $resultsPage->getScore());

… etc …
@daveliddament

................FF. 63 / 444 (14%)

... 126 / 444 (28%)

.........................FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...... 189 / 444 (42%)
FFFFFFFFFFFF... 252 / 444 (56%)
...................FF....FFFF.......FFFFFFFFFFFFFF............. 315 / 444 (70%)
..................................FFFFFFFFFFFFFFFFFFFFFFFFFFF.. 378 / 444 (85%)
FFFFFFFFFFFFFF........FFF 441 / 444 (99%)
...

Time: 20 minutes 54 seconds, Memory: 24.75MB

There were lots of failures: 😞

@daveliddament

STORY 1

REDUCE COUPLING FURTHER

SOFTWARE
UNDER TEST

PAGE
OBJECTS

TEST DSL
LAYER

STORY 1

REDUCE COUPLING FURTHER

SOFTWARE
UNDER TEST

PAGE
OBJECTS

TEST DSL
LAYER

submitUsersAnswers()

getTeamScore()

STORY 1

TEST LOOK A BIT MORE LIKE THIS

assignUserToTeam($bob, $teamApple);

submitUsersAnswers($bob, self::QUIZ_1,

 [‘engagement’ => ‘a’, ‘enjoyment’ => ‘b’, … etc …]);

$score = getTeamScore($apple);

assertEquals(7, $score);

@daveliddament

STORY 1

THINGS I WANTED TO TEST…

Do an individual’s score get correctly
allocated to their team?

@daveliddament

STORY 1

TEST LOOK A BIT MORE LIKE THIS

assignUserToTeam($bob, $teamApple);

submitUsersAnswers($bob, self::QUIZ_1,

 [‘engagement’ => ‘a’, ‘enjoyment’ => ‘b’, … etc …]);

$score = getTeamScore($apple);

assertEquals(7, $score);

@daveliddament

STORY 1

SOFTWARE
UNDER TEST

PAGE
OBJECTSTESTS

DSL
LAYER

STORY 1

SOFTWARE
UNDER TEST

PAGE
OBJECTSTESTS

DSL
LAYER

STORY 1

THE MORAL OF STORY 1…

@daveliddament

STORY 1

THE MORAL OF STORY 1…
▸ Testing an application’s business logic via the UI layer is

difficult, time consuming and requires a lot of effort.

@daveliddament

STORY 1

THE MORAL OF STORY 1…
▸ Testing an application’s business logic via the UI layer is

difficult, time consuming and requires a lot of effort.

▸ Introduce layers between the tests and the SUT to:

▸ Reduce coupling

▸ Isolate changes to updates in these layers

▸ Tests don’t change unless the functionality of the SUT
changes.

@daveliddament

STORY 1

THE MORAL OF STORY 1…
▸ Testing an application’s business logic via the UI layer is

difficult, time consuming and requires a lot of effort.

▸ Introduce layers between the tests and the SUT to:

▸ Reduce coupling

▸ Isolate changes to updates in these layers

▸ Tests don’t change unless the functionality of the SUT
changes.

▸ I don’t like doing this kind of testing!
@daveliddament

WHY

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

STORY 1

BUT WHAT IF …

@daveliddament

STORY 1

BUT WHAT IF …

We replace the entire website with

an app?

@daveliddament

STORY 1

ALSO …

This feels like a lot of effort.

@daveliddament

#2
@daveliddament

STORY 2

$
BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

SOFTWARE

STORY 2

THERE MUST BE A BETTER WAY…

‣ Layered architecture

‣ Hexagonal architecture

@daveliddament

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

STORY 2

SERVICE LAYER

interface AnswerSubmissionService
{

 public function submitUsersAnswers(
 User $user,
 int $quizId,
 array $answers
): void;

}

@daveliddament

STORY 2

Integration

@daveliddament

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

<<EG>>

<<PG>>

STORY 2

EMAIL GATEWAY

@daveliddament

STORY 2

EMAIL GATEWAY
interface EmailGateway
{

 /**
 * Sends an email
 */
 public function sendEmail(
 $to,
 $from,
 $subject,
 $message
): void;

}

@daveliddament

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

<<EG>>

<<PG>>

STORY 2

EMAIL GATEWAY TEST IMPLEMENTATION
EmailGatewaySpy implements EmailGateway
{

 public function sendEmail(… parameters …) {
 // Store email in array;
 }

 public function getEmails() {
 return array of emails
 }

}

@daveliddament

STORY 2

TESTING IS EASIER

SERVICE LAYER
OF SUT

TEST DSL
LAYER

STORY 2

TESTING IS EASIER

SERVICE LAYER
OF SUT

TEST DSL
LAYER

submitUsersAnswers()

STORY 2

TESTING IS EASIER

SERVICE LAYER
OF SUT

TEST DSL
LAYER

submitUsersAnswers() submitUsersAnswers()

STORY 2

BUSINESS LOGIC

$
CONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

STORY 2

BUSINESS LOGIC

STORY 2

BUSINESS LOGIC
TEST ENTRY

POINT

TEST DOUBLE

TEST DOUBLE

STORY 2

BUSINESS LOGIC

$
CONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

TEST ENTRY
POINT

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

FRAMEWORK

SOFTWARE

ADAPTOR

FRAMEWORK

STORY 2

$

BUSINESS LOGICCONTROLLER SOFTWARE

ADAPTOR

ADAPTOR

FRAMEWORK

STORY 2

$

BUSINESS LOGICSOFTWARECONTROLLER

ADAPTOR

ADAPTOR

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

SOFTWARE

STORY 2

$

BUSINESS LOGICCONTROLLER

ADAPTOR

ADAPTOR

FRAMEWORK

STORY 2

BUSINESS LOGICCONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

TEST ENTRY
POINT

TEST DOUBLE

TEST DOUBLE

STORY 2

Integration

@daveliddament

STORY 2

UI?

@daveliddament

STORY 2

WHAT DO WE TEST AT THE UI LEVEL?

@daveliddament

STORY 2

WHAT DO WE TEST AT THE UI LEVEL?

@daveliddament

STORY 2

THE MORAL OF STORY 2…

@daveliddament

STORY 2

THE MORAL OF STORY 2…
▸ Testing an application’s business logic via at integration

level is much easier than at the UI level.

▸ Coupling between test and SUT via the Service Layer.

@daveliddament

STORY 2

THE MORAL OF STORY 2…
▸ Testing an application’s business logic via at integration

level is much easier than at the UI level.

▸ Coupling between test and SUT via the Service Layer.

▸ Still need some testing at UI level.

@daveliddament

STORY 2

THE MORAL OF STORY 2…
▸ Testing an application’s business logic via at integration

level is much easier than at the UI level.

▸ Coupling between test and SUT via the Service Layer.

▸ Still need some testing at UI level.

▸ We need to architect our code in a way to make this
possible.

▸ Business logic has no knowledge of the world around it.

@daveliddament

STORY 2

THE MORAL OF STORY 2…
▸ Testing an application’s business logic via at integration

level is much easier than at the UI level.

▸ Coupling between test and SUT via the Service Layer.

▸ Still need some testing at UI level.

▸ We need to architect our code in a way to make this
possible.

▸ Business logic has no knowledge of the world around it.

▸ I really like doing this kind of testing!
@daveliddament

WHY

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

STORY 2

BUT …

@daveliddament

STORY 2

BUT …

Parts of my test suite are still tightly
coupled to the software I’m testing…

@daveliddament

#3
@daveliddament

STORY 3

WE EXPAND TO OFFER THE SERVICE TO MULTIPLE COMPANIES

@daveliddament

STORY 3

WE EXPAND TO OFFER THE SERVICE TO MULTIPLE COMPANIES
▸ Each company has a branded page on their own

subdomain.

@daveliddament

STORY 3

WE EXPAND TO OFFER THE SERVICE TO MULTIPLE COMPANIES
▸ Each company has a branded page on their own

subdomain.

▸ Could could only login from your company’s subdomain.

@daveliddament

STORY 3

WE EXPAND TO OFFER THE SERVICE TO MULTIPLE COMPANIES
▸ Each company has a branded page on their own

subdomain.

▸ Could could only login from your company’s subdomain.

▸ Behind the scenes authentication now requires:

▸ username

▸ password

▸ subdomain

@daveliddament

................FF. 63 / 444 (14%)

... 126 / 444 (28%)

.........................FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF...... 189 / 444 (42%)
FFFFFFFFFFFF... 252 / 444 (56%)
...................FF....FFFF.......FFFFFFFFFFFFFF............. 315 / 444 (70%)
..................................FFFFFFFFFFFFFFFFFFFFFFFFFFF.. 378 / 444 (85%)
FFFFFFFFFFFFFF........FFF 441 / 444 (99%)
...

Time: 20 minutes 54 seconds, Memory: 24.75MB

There were lots of failures: 😞

@daveliddament

STORY 3

ONE OF THE MANY FAILING TESTS…

Does an individual’s score get
correctly allocated to their team?

@daveliddament

STORY 3

STORY 3

SEEDING A DATABASE
users:
 - name: Anna
 email: anna@acme.com
 password: Passw1rd
 team: Apple

 - name: Bob
 email: bob@example.com
 password: Passw5rd
 team: Apple

@daveliddament

STORY 3

SEEDING A DATABASE
users:
 - name: Anna
 email: anna@acme.com
 password: Passw1rd
 team: Apple

 - name: Bob
 email: bob@example.com
 password: Passw5rd
 team: Apple

X
@daveliddament

STORY 3

BUSINESS LOGICCONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

TEST ENTRY
POINT

TEST DOUBLE

TEST DOUBLE

STORY 3

BUSINESS LOGICCONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

TEST ENTRY
POINT

TEST DOUBLE

TEST DOUBLE

STORY 3

BUILDING DATA FIXTURES

@daveliddament

 $user = $this->userService->registerUser(
 “anna@acme.com”,
 “Anna”,
 “Passw0rd”);

STORY 3

HAND BUILDING

@daveliddament

 $user = $this->userService->registerUser(
 “anna@acme.com”,
 “Anna”,
 “Passw0rd”,
 $comanyId);

STORY 3

HAND BUILDING

@daveliddament

 $user = $this->userService->registerUser(
 “anna@acme.com”,
 “Anna”,
 “Passw0rd”,
 $comanyId);

STORY 3

HAND BUILDING

XXX
@daveliddament

STORY 3

OBJECT MOTHER

$user = $this->userObjectMother->getAnna();

// User will have default values for name,
// email, etc

@daveliddament

STORY 3

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother {

 public function getAnna(): User {

 … return user if already created …

 $user = $userService->registerUser(
 “anna@acme.com”,
 “Anna”,
 “Passw0rd”);

 return $user;
}

@daveliddament

STORY 3

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother {

 public function getAnna(): User {

 … return user if already created …

 $user = $userService->registerUser(
 “anna@acme.com”,
 “Anna”,
 “Passw0rd”
 $companyId);

 return $user;
}

@daveliddament

STORY 3

TEST BUILDER: 1

$userBuilder = new UserBuilder();
$user = $userBuilder->build();

// User will have default values for
// name, email, etc

@daveliddament

STORY 3

USING A TEST BUILDER (2)

 $userBuilder = new UserBuilder();
 $user = $userBuilder
 ->name(“Annabelle”)
 ->password(“Passw4rd”)
 ->team(“Banana”)
 ->build();

@daveliddament

STORY 3

DEFER TO OTHER OBJECT MOTHERS / BUILDERS

class UserObjectMother {

 public function getAnna(): User {

 $company = $this->companyObjectMother()
 ->getAcmeCompany();

 $user = $userService->registerUser(
 “anna@acme.com”,
 “Anna”,
 “Passw0rd”
 $company);

 return $user;
}

@daveliddament

STORY 3

HYBRID

@daveliddament

users:
 - name: Anna
 email: anna@acme.com
 password: Passw1rd
 team: Apple

 - name: Bob
 email: bob@example.com
 password: Passw5rd
 team: Apple

STORY 3

MORAL OF STORY 3…

@daveliddament

STORY 3

MORAL OF STORY 3…

▸ Use patterns like Object Mothers / Test Builders for
building data fixtures.

▸ Makes tests more robust to change.

▸ Allows us to test with a fake in memory database.

@daveliddament

STORY 3

MORAL OF STORY 3…

▸ Use patterns like Object Mothers / Test Builders for
building data fixtures.

▸ Makes tests more robust to change.

▸ Allows us to test with a fake in memory database.

▸ Decoupling our tests from the software under test.

@daveliddament

WHY

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

STORY 1

SOFTWARE
UNDER TEST

PAGE
OBJECTSTESTS

DSL
LAYER

STORY 2

BUSINESS LOGICCONTROLLER

PAYMENT
GATEWAY

EMAIL
GATEWAY

TEST ENTRY
POINT

TEST DOUBLE

TEST DOUBLE

STORY 3

@daveliddament

XXX

SUMMARY

TEST PYRAMID

UI

Integration

Unit

@daveliddament

SUMMARY

@daveliddament

SUMMARY

▸ Decoupling is good

@daveliddament

SUMMARY

▸ Decoupling is good

▸ Reduces development and maintenance costs

@daveliddament

SUMMARY

▸ Decoupling is good

▸ Reduces development and maintenance costs

▸ Do the right kind of tests at the right level

@daveliddament

SUMMARY

▸ Decoupling is good

▸ Reduces development and maintenance costs

▸ Do the right kind of tests at the right level

▸ Architect the code correctly

@daveliddament

SUMMARY

▸ Decoupling is good

▸ Reduces development and maintenance costs

▸ Do the right kind of tests at the right level

▸ Architect the code correctly

▸ Test business logic at the service layer

@daveliddament

SUMMARY

▸ Decoupling is good

▸ Reduces development and maintenance costs

▸ Do the right kind of tests at the right level

▸ Architect the code correctly

▸ Test business logic at the service layer

▸ Test UI to check it is correctly wired up to service layer

@daveliddament

SUMMARY

▸ Decoupling is good

▸ Reduces development and maintenance costs

▸ Do the right kind of tests at the right level

▸ Architect the code correctly

▸ Test business logic at the service layer

▸ Test UI to check it is correctly wired up to service layer

▸ Building objects using Object Mother / Builder patterns

@daveliddament

Dave Liddament @daveliddament

Lamp Bristol

Organise PHP-SW and Bristol PHP Training
17 years of writing software (C, Java, Python, PHP)

Author of Static Analysis Results Baserliner (SARB)

https://joind.in/talk/54fdc

IMAGE CREDITS

‣ Decouple © Can Stock Photo / iqoncept

‣ Story © Can Stock Photo / Palto

‣ Man On Moon: © Can Stock Photo / openlens

‣ Confession © Can Stock Photo / lenm

‣ Pyramid © Can Stock Photo / Arcady

‣ Feedback © Can Stock Photo / kikkerdirk

‣ Scripts © Can Stock Photo / LoopAll

‣ Tools © Can Stock Photo / dedMazay

‣ Builder © Can Stock Photo / aleksangel

‣ Database © Can Stock Photo / dvarg

‣ Fake © Can Stock Photo / carmendorin

‣ People chatting © Can Stock Photo / studioworkstock

‣ Seeding: © Can Stock Photo / italianestro

‣ Banking app © Can Stock Photo / tashka2000

‣ Old Telephone © Can Stock Photo / barneyboogles

‣ Bank © Can Stock Photo / dolgachov

‣ Coupler © Can Stock Photo / ArtImages

‣ Bank Building © Can Stock Photo / dvarg

‣ Online Shopping © Can Stock Photo / Wetzkaz

