‘ l ' l . phpDay 2019

AssertTrue(isDecoupled(“MyTests"))

Dave Liddament
@daveliddament

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

VALUE OF TESTS =
COST OF BUGS FOUND BY TESTS
- COST OF TEST SUITE

@daveliddament

IS THIS TALK FOR YOU?

@daveliddament

IS THIS TALK FOR YOU?

YES

» Some automated testing.

» You want high level
concepts you can apply
when testing applications
via the Ul or at integration
level.

@daveliddament

IS THIS TALK FOR YOU?

YES NO
Some automated testing. Experienced tester.
You want high level You already write unit,
concepts you can apply integrations and end to
when testing applications end tests.
via the Ul or at integration

You don't abstract talks.
level.

@daveliddament

@daveliddament

AGENDA

@daveliddament

AGENDA

» Terminology

@daveliddament

TERMINOLOGY

COUPLING

@daveliddament

TERMINOLOGY

COUPLING

@daveliddament

TERMINOLOGY

COUPLING

@daveliddament

TERMINOLOGY

TEST DOUBLES

@daveliddament

TERMINOLOGY

TEST DOUBLES

@daveliddament

TERMINOLOGY

TEST DOUBLES

@daveliddament

TERMINOLOGY

TEST PYRAMID

Ul

Integration

Unit

@daveliddament

@daveliddament

STORY 1

TYPICAL USER JOURNEY

» Bob would log in

» Bob see a list of quizzes
» Pick one he hadn’t done
» Complete the quiz

» See his score

» His team’s score would be updated

@daveliddament

STORY 1

@daveliddament

STORY 1

INITIALLY TESTS WOULD DO THIS KIND OF THING.. .

» Visit home page

» Find login link.

» Click login link

» Find form element with name “username”
» Enter username

» Find form element with name “password”
» Enter password

» Find button with type “submit”

» Click button

» ... etc...

@daveliddament

STORY 1

A TINY CHANGE REQUEST... ..

Can we change the layout of the page
showing the lists of quizzes?

@daveliddament

... 63 / 444 (14%)
... 126 / 444 (28%)
... 189 / 444 (42%)
... 252 / 444 (56%)
... 315 / 444 (70%)
... 378 / 444 (85%)
... 441 / 444 (99%)

Time: 1.99 seconds, Memory: 24.75MB

@daveliddament

/ 444 (14%)
/ 444 (28%)
/ 444 (42%)
/ 444 (56%)
/ 444 (70%)
/ 444 (85%)
/ 444 (99%)

Time: 20 minutes 54 seconds, Memory: 24.75MB

There were lots of failures: ~--

@daveliddament

@daveliddament

STORY 1

@daveliddament

STORY 1

PROBLEM: TIGHT COUPLING

TEST SOFTWARE
UNDER TEST

@daveliddament

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

TEST SOFTWARE
UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

TEST PAGE SOFTWARE
OBJECT UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

login ($username, $password)

answerQuestion ($answer)

TEST PAGE
OBJECT

SOFTWARE
UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

login ($username, $password) findElementByName ($name)

answerQuestion ($answer) click ()

TEST PAGE SOFTWARE
OBJECT UNDER TEST

STORY 1

A PAGE OBJECT CAN...

» Simulate an action a human would do.
» Grab data from the page.

» Navigate to another page.

@daveliddament

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

TEST PAGE SOFTWARE
OBJECT UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

o0

TEST PAGE SOFTWARE
OBJECT UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

3o

TEST PAGE SOFTWARE
OBJECT UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

login ($username, $password)

answerQuestion ($answer)

TEST PAGE
OBJECT

3o

SOFTWARE
UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

TEST PAGE SOFTWARE
OBJECT UNDER TEST

STORY 1

REDUCE COUPLING WITH PAGE OBJECT

PAGE SOFTWARE
TESTS 0BJECT UNDER TEST

STORY 1

TEST LOOK A BIT MORE LIKE THIS

$loginPage = $homePage->getLoginPage();
$myQuizzesPage = $loginPage->login(“bob”, “password”);
$quiz1Page = $myQuizesPage->findQuiz(1);
$quiz1Page->setAnswer1(‘a’);
$quiz1Page->setAnswer2('b’);

$resultsPage = $quiz1Page->submitAnswers();
assertEquals(3, $resultsPage->getScore());

.. etc...
@daveliddament

STORY 1

THINGS | WANTED TO TEST... .

Does an individual’s score get
correctly allocated to their team?

@daveliddament

STORY 1

A TINY CHANGE REQUEST... ..

Could we change the page a user
goes to after logging in?

@daveliddament

STORY 1

THE TESTS WILL BREAK

$loginPage = $homePageObject->getLoginPageObject();
$myQuizzesPage = $loginPage->login(“bob”, “password”);
$quiz1Page = $myQuizesPage->findQuiz(1);
$quiz1Page->setAnswer1(‘a’);

$quiz1Page->setAnswer2('b’);

$resultsPage = $quiz1Page->submitAnswers();

assertEquals(3, $resultsPage->getScore());

.. etc...
@daveliddament

/ 444 (14%)
/ 444 (28%)
/ 444 (42%)
/ 444 (56%)
/ 444 (70%)
/ 444 (85%)
/ 444 (99%)

Time: 20 minutes 54 seconds, Memory: 24.75MB

There were lots of failures: ~--

@daveliddament

STORY 1

REDUCE COUPLING FURTHER .

TEST DSL PAGE SOFTWARE
LAYER OBJECTS UNDER TEST

STORY 1

REDUCE COUPLING FURTHER

submitUsersAnswers()

getTeamScore() I

TEST DSL PAGE SOFTWARE
LAYER OBJECTS UNDER TEST

STORY 1

TEST LOOK A BIT MORE LIKE THIS

assignUserToTeam($bob, $teamApple);
submitUsersAnswers($bob, self::QUIZ_1,

['engagement’ =>'a’, ‘enjoyment’ =>'b’, ... etc...]);
$score = getTeamScore($apple);

assertEquals(7, $score);

@daveliddament

STORY 1

THINGS | WANTED TO TEST... .

Do an individual’s score get correctly
allocated to their team?

@daveliddament

STORY 1

TEST LOOK A BIT MORE LIKE THIS

assignUserToTeam($bob, $teamApple);
submitUsersAnswers($bob, self::QUIZ_1,

[‘'engagement’ =>‘a’, ‘enjoyment’ =>"'b’, ... etc ...]);
$score = getTeamScore($apple);

assertEquals(7, $score);

@daveliddament

STORY 1

DSL

PAGE SOFTWARE
TESTS LAYER OBJECTS UNDER TEST

STORY 1

DSL

PAGE SOFTWARE
TESTS LAYER OBJECTS UNDER TEST

STORY 1

THE MORAL OF STORY 1...

@daveliddament

STORY 1

THE MORAL OF STORY 1....

» Testing an application’s business logic via the Ul layer is
difficult, time consuming and requires a lot of effort.

@daveliddament

STORY 1

Testing an application’s business logic via the Ul layer is
difficult, time consuming and requires a lot of effort.

Introduce layers between the tests and the SUT to:
Reduce coupling
Isolate changes to updates in these layers

Tests don’t change unless the functionality of the SUT
changes.

STORY 1

Testing an application’s business logic via the Ul layer is
difficult, time consuming and requires a lot of effort.

Introduce layers between the tests and the SUT to:
Reduce coupling
Isolate changes to updates in these layers

Tests don’t change unless the functionality of the SUT
changes.

| don't like doing this kind of testing!

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

STORY 1

BUT WHATIF ...

@daveliddament

STORY 1

BUT WHATIF ...

We replace the entire website with

an app?

@daveliddament

STORY 1

ALSO ...

This feels like a lot of effort.

@daveliddament

@daveliddament

STORY 2

THERE MUST BE A BETTER WAY.. .

» Layered architecture

» Hexagonal architecture

@daveliddament

STORY 2

FRAMEWORK

CONTROLLER BUSINESS LOGIC

STORY 2

interface AnswerSubmissionService

{

public function submitUsersAnswers (
User Suser,
int SquizlId,
array S$answers

) : void;

STORY 2

* Integration

@daveliddament

STORY 2

FRAMEWORK

CONTROLLER BUSINESS LOGIC

STORY 2

FRAMEWORK

<<PG>>

BUSINESS LOGIC

<<EG>>

STORY 2

EMAIL GATEWAY

@daveliddament

STORY 2

EMAIL GATEWAY

interface EmailGateway

{
/**

* Sends an emaill
*/
public function sendEmail (
Sto,
Sfrom,
Ssubject,
Smessage
) : void;

@daveliddament

STORY 2

FRAMEWORK

<<PG>>

BUSINESS LOGIC

<<EG>>

STORY 2

EMAIL GATEWAY TEST IMPLEMENTATION

EmailGatewaySpy implements EmailGateway

{

public function sendEmail (.. parameters ..) {
// Store email in array;

J

public function getEmails () {
return array of emails

}

@daveliddament

STORY 2

TESTING IS EASIER

TEST DSL SERVICE LAYER
LAYER OF SUT

STORY 2

TESTING IS EASIER

submitUsersAnswers()

TEST DSL SERVICE LAYER
LAYER OF SUT

STORY 2

TESTING IS EASIER

submitUsersAnswers() submitUsersAnswers()

TEST DSL SERVICE LAYER
LAYER OF SUT

STORY 2

PAYMENT
GATEWAY

Q B SE s BUSINESS LOGIC

EMAIL
GATEWAY

%

STORY 2

BUSINESS LOGIC

STORY 2

TEST DOUBLE

TEST ENTRY

TEST DOUBLE

POINT BUSINESS LOGIC

STORY 2

|

PAYMENT
GATEWAY
TEST ENTRY
S —— CONTROLLER BUSINESS LOGIC
EMAIL
GATEWAY

%

STORY 2

FRAMEWORK

CONTROLLER BUSINESS LOGIC

SOFTWARE

SOFTWARE

STORY 2

Q BUSINESS LOGIC

STORY 2

FRAMEWORK

CONTROLLER BUSINESS LOGIC

STORY 2

TEST DOUBLE

TEST ENTRY

TEST DOUBLE

POINT BUSINESS LOGIC

STORY 2

* Integration

@daveliddament

STORY 2

@daveliddament

STORY 2

WHAT DO WE TEST AT THE Ul LEVEL?

e
e

@daveliddament

STORY 2

WHAT DO WE TEST AT THE Ul LEVEL?

@daveliddament

STORY 2

THE MORAL OF STORY 2. ..

@daveliddament

STORY 2

THE MORAL OF STORY 2...

» Testing an application’s business logic via at integration
level is much easier than at the Ul level.

» Coupling between test and SUT via the Service Layer.

@daveliddament

STORY 2

THE MORAL OF STORY 2...

» Testing an application’s business logic via at integration
level is much easier than at the Ul level.

» Coupling between test and SUT via the Service Layer.

» Still need some testing at Ul level.

@daveliddament

STORY 2

Testing an application’s business logic via at integration
level is much easier than at the Ul level.

Coupling between test and SUT via the Service Layer.
Still need some testing at Ul level.

We need to architect our code in a way to make this
possible.

Business logic has no knowledge of the world around it.

STORY 2

Testing an application’s business logic via at integration
level is much easier than at the Ul level.

Coupling between test and SUT via the Service Layer.
Still need some testing at Ul level.

We need to architect our code in a way to make this
possible.

Business logic has no knowledge of the world around it.

| really like doing this kind of testing!

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

STORY 2

BUT ...

@daveliddament

STORY 2

BUT ...

Parts of my test suite are still tightly
coupled to the software I'm testing...

@daveliddament

STORY 3

WE EXPAND T0 OFFER THE SERVICE TO MULTIPLE COMPANIES

@daveliddament

STORY 3

WE EXPAND TO OFFER THE SERVICE TO MULTIPLE COMPANIES

» Each company has a branded page on their own
subdomain.

@daveliddament

STORY 3

WE EXPAND TO OFFER THE SERVICE TO MULTIPLE COMPANIES

» Each company has a branded page on their own
subdomain.

» Could could only login from your company’s subdomain.

@daveliddament

STORY 3

WE EXPAND TO OFFER THE SERVICE TO MULTIPLE COMPANIES

» Each company has a branded page on their own
subdomain.

» Could could only login from your company’s subdomain.
» Behind the scenes authentication now requires:

) username

» password

» subdomain

@daveliddament

/ 444 (14%)
/ 444 (28%)
/ 444 (42%)
/ 444 (56%)
/ 444 (70%)
/ 444 (85%)
/ 444 (99%)

Time: 20 minutes 54 seconds, Memory: 24.75MB

There were lots of failures: ~--

@daveliddament

STORY 3

ONE OF THE MANY FAILING TESTS. ..

Does an individual’s score get
correctly allocated to their team?

@daveliddament

STORY 3

STORY 3

users:
- name: Anna
emalil: annalacme.com
password: Passwlrd

team: Apple

- name: Bob
email: bob@dexample.com
password: PasswSrd

team: Apple

STORY 3

SEEDING A DATABASE

users:
- name: Anna
email: @Qacme.com
password X Passwlrd

team:

- name: Bob
email: bob@dexample.com
password: PasswSrd

team: Apple

@daveliddament

STORY 3

TEST DOUBLE

TEST ENTRY -
POINT BUSINESS LOGIC

TEST DOUBLE

STORY 3

TEST DOUBLE

TEST ENTRY
POINT BUSINESS LOGIC

TEST DOUBLE

STORY 3

BUILDING DATA FIXTURES

@daveliddament

STORY 3

HAND BUILDING

Suser = $this->userService->registerUser (
“‘anna@acme.com”,
“Anna”
4
“PasswOrd”) ;

@daveliddament

STORY 3

HAND BUILDING

Suser = $this->userService->registerUser (
“anna@acme.com”,
“Anna”
4
“PasswOrd”,
ScomanyId) ;

@daveliddament

STORY 3

HAND BUILDING

Suser = $this->userService->registerUser (
“‘anna@acme.com”,

Ann
Pass@rd”,
O d)

44

@daveliddament

STORY 3

0BJECT MOTHER

Suser = Sthis->userObjectMother->getAnna() ;

// User will have default values for name,
// email, etc

@daveliddament

STORY 3

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother ({
public function getAnna(): User {
.. return user 1i1f already created ..
Suser = $userService->registerUser (
“‘anna@acme.com”,

“Anna”,
“PasswOrd”) ;

return Suser;

@daveliddament

STORY 3

OBJECT MOTHER: IMPLEMENTATION

class UserObjectMother {
public function getAnna(): User ({

.. return user 1i1f already created ..

Suser = $userService->registerUser (
“‘anna@acme.com”,
“Anna”,
“PasswOrd”
ScompanylId) ;

return Suser;

@daveliddament

STORY 3

TEST BUILDER: 1

SuserBuilder = new UserBuilder () ;
Suser = SuserBuilder->build|() ;

// User will have default wvalues for
// name, email, etc

@daveliddament

STORY 3

USING A TEST BUILDER (2)

SuserBuilder = new UserBuilder () ;
Suser = SuserBuilder
->name (“Annabelle”)
->password (“Passw4rd”)
->team (“'Banana”)
->build () ;

@daveliddament

STORY 3

DEFER TO OTHER OBJECT MOTHERS / BUILDERS

class UserObjectMother ({
public function getAnna(): User ({

Scompany = Sthis->companyObjectMother ()
->getAcmeCompany () ;

Suser = SuserService->registerUser (
“‘anna@acme.com”,
“Anna”
’
“PasswOrd”

Scompany) ;
return Suser;

@daveliddament

STORY 3

HYBRID

users:
- name: Anna
emall: anna@acme.com
password: Passwlrd

team: Apple

- name: Bob
email: bobWdexample.com
password: Passwbrd

team: Apple

@daveliddament

STORY 3

MORAL OF STORY 3...

@daveliddament

STORY 3

MORAL OF STORY 3...

» Use patterns like Object Mothers / Test Builders for
building data fixtures.

» Makes tests more robust to change.

» Allows us to test with a fake in memory database.

@daveliddament

STORY 3

MORAL OF STORY 3...

» Use patterns like Object Mothers / Test Builders for
building data fixtures.

» Makes tests more robust to change.
» Allows us to test with a fake in memory database.

» Decoupling our tests from the software under test.

@daveliddament

DECOUPLED TESTS REDUCE THE
DEVELOPMENT AND MAINTENANCE
COSTS OF THE TEST SUITE.

@daveliddament

STORY 1

DSL

PAGE SOFTWARE
TESTS LAYER OBJECTS UNDER TEST

STORY 2

>

TEST DOUBLE

TEST ENTRY -
POINT BUSINESS LOGIC

TEST DOUBLE

STORY 3

@daveliddament

SUMMARY

TEST PYRAMID

Ul

Integration

Unit

@daveliddament

SUMMARY

@daveliddament

SUMMARY

» Decoupling is good

@daveliddament

SUMMARY

» Decoupling is good

» Reduces development and maintenance costs

@daveliddament

SUMMARY

» Decoupling is good
» Reduces development and maintenance costs

» Do the right kind of tests at the right level

@daveliddament

SUMMARY

» Decoupling is good
» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Architect the code correctly

@daveliddament

SUMMARY

» Decoupling is good

» Reduces development and maintenance costs
» Do the right kind of tests at the right level

» Architect the code correctly

» Test business logic at the service layer

@daveliddament

Decoupling is good
Reduces development and maintenance costs
Do the right kind of tests at the right level
Architect the code correctly
Test business logic at the service layer

Test Ul to check it is correctly wired up to service layer

Decoupling is good
Reduces development and maintenance costs
Do the right kind of tests at the right level
Architect the code correctly
Test business logic at the service layer
Test Ul to check it is correctly wired up to service layer

Building objects using Object Mother / Builder patterns

| Author of-St;]hc Analysis Results Baserliner (SARB)

Organise PHP-SW and Bristol PHP Training

17 years of writing software (C, Java, Python, ald

https://joind.in/talk/54tdc

IMAGE CREDITS

Decouple © Can Stock Photo / iqoncept

» Story © Can Stock Photo / Palto

> Man On Moon: © Can Stock Photo / openlens

» Confession © Can Stock Photo / lenm

> Pyramid © Can Stock Photo / Arcady

> Feedback © Can Stock Photo / kikkerdirk

» Scripts © Can Stock Photo / LoopAll

> Tools © Can Stock Photo / dedMazay

» Builder © Can Stock Photo / aleksangel

> Database © Can Stock Photo / dvarg

» Fake © Can Stock Photo / carmendorin

People chatting © Can Stock Photo / studioworkstock
> Seeding: © Can Stock Photo / italianestro

» Banking app © Can Stock Photo / tashka2000

> Old Telephone © Can Stock Photo / barneyboogles
» Bank © Can Stock Photo / dolgachov

> Coupler © Can Stock Photo / Artimages

» Bank Building © Can Stock Photo / dvarg

> Online Shopping © Can Stock Photo / Wetzkaz

